The important role of Tris[2-(dimethylamino)ethyl]amine

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Tris[2-(dimethylamino)ethyl]amine, 33527-91-2

33527-91-2, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Tris[2-(dimethylamino)ethyl]amine, cas is 33527-91-2,the chiral-nitrogen-ligands compound, it is a common compound, a new synthetic route is introduced below.

General procedure: The copper complex Cu5-1 was dissolved in water, and an excessive amount of an aqueous solution of saturated sodium tetrafluoroborate (manufactured by Wako Pure Chemical Industries, Ltd.) was added while stirring. A precipitated solid was collected by filtering and a copper complex Cu5-72 was obtained.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Tris[2-(dimethylamino)ethyl]amine, 33527-91-2

Reference£º
Patent; FUJIFILM Corporation; Sasaki, Kouitsu; Kawashima, Takashi; Hitomi, Seiichi; Shiraishi, Yasuharu; US10215898; (2019); B2;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Application of 6-Bromo-2-methylbenzo[d]oxazole

The chemical industry reduces the impact on the environment during synthesis,33527-91-2,Tris[2-(dimethylamino)ethyl]amine,I believe this compound will play a more active role in future production and life.

33527-91-2, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Tris[2-(dimethylamino)ethyl]amine, cas is 33527-91-2,the chiral-nitrogen-ligands compound, it is a common compound, a new synthetic route is introduced below.

General procedure: The copper complex Cu5-1 was dissolved in water, and an excessive amount of an aqueous solution of saturated sodium tetrafluoroborate (manufactured by Wako Pure Chemical Industries, Ltd.) was added while stirring. A precipitated solid was collected by filtering and a copper complex Cu5-72 was obtained.

The chemical industry reduces the impact on the environment during synthesis,33527-91-2,Tris[2-(dimethylamino)ethyl]amine,I believe this compound will play a more active role in future production and life.

Reference£º
Patent; FUJIFILM Corporation; Sasaki, Kouitsu; Kawashima, Takashi; Hitomi, Seiichi; Shiraishi, Yasuharu; US10215898; (2019); B2;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Introduction of a new synthetic route about 33527-91-2

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Tris[2-(dimethylamino)ethyl]amine, 33527-91-2

33527-91-2, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Tris[2-(dimethylamino)ethyl]amine, cas is 33527-91-2,the chiral-nitrogen-ligands compound, it is a common compound, a new synthetic route is introduced below.

To a solution of tris(2-dimethylaminoethyl)amine (0.426 g, 1.85mmol) in acetonitrile (4 mL) was added 1-bromodecane (1.27 g, 5.73 mmol). Theresulting mixture was heated at reflux with stirring for 18 hours. After cooling, and the addition of hexanes (5 mL), a white solid precipitated, which was filtered with a Buchner funnel, transferring with a cold hexanes/acetone mixture (15 mL, 1:1). The solid was rinsed with a cold hexanes/acetone mixture (2O mL, 1:1), resulting in T10 10,10,10 (1.16 g, 70%) as a white powder; mp=223-248 C; ?H NMR (300 MHz,CDC13) oe 4.11-4.02 (m, 6H), 3.62-3.53 (m, 6H), 3.41-3.27 (m, 24H), 1.72-1.62 (m, 6H), 1.38-1.14 (m, 42H), 0.85-0.78 (m, 9H); ?3C NMR (75 MHz, CD3OD) oe 65.4,61.1, 50.2, 46.9, 31.6, 29.2, 29.0, 28.9, 26.1, 22.4, 22.3, 13.0; high resolution mass spectrum (ESI) m/z 217.9095 ([Mj3 calculated for [C42H93N4j3: 217.9128). See alsoYoshimura et al., 2012, Langmuir 28:9322-9331. ?H and ?3C NMR spectra of compound T-10,10,10 can be found in Figure 50.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Tris[2-(dimethylamino)ethyl]amine, 33527-91-2

Reference£º
Patent; TEMPLE UNIVERSITY-OF THE COMMONWEALTH SYSTEM OF HIGHER EDUCATION; VILLANOVA UNIVERSITY; WUEST, William, M.; MINBIOLE, Kevin, P.C.; BARBAY, Deanna, L.; (227 pag.)WO2016/172436; (2016); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

The important role of 31886-58-5

The chemical industry reduces the impact on the environment during synthesis,31886-58-5,(R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine,I believe this compound will play a more active role in future production and life.

31886-58-5, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, cas is 31886-58-5,the chiral-nitrogen-ligands compound, it is a common compound, a new synthetic route is introduced below.

To a degassed solution of (R)-1 (662 mg, 2.57 mmol) in THF (3.2 mL) was added sec-BuLi (1.4 M in cyclohexane, 2 mL, 2.8 mmol) at 0 C. The resulting deep-red solution was stirred for an additional 3 h at the same temperature. To this reaction mixture was added a solution of ZnBr2 (1.3 M in THF, 2.38 mL, 3.09 mmol) at 0 C and stirring was continued at r.t. for 1 h. To a degassed solution of [Pd2dba3]¡¤CHCl3 (266 mg, 0.257 mmol) and tris(2,4-di-tert-butylphenyl)-phosphite (666 mg, 1.029 mmol) in THF (5.5 mL) was added a degassed solution of sulfide (S)- 4 (890 mg, 2.05 mmol) in THF (3 mL). The resulting dark purple solution was stirred for an additional 10 min at r.t. and was subsequently added dropwise to the previously prepared organozinc compound. The reaction mixture was heated to reflux under argon at 75 C for 18 h, and then cooled to r.t., quenched with H2O and extracted with ethyl acetate (3 ¡Á 200 mL). The combined organic layers were washed with brine (3 ¡Á 200 mL) and dried over MgSO4. The mixture was filtered, the solvent was evaporated and the crude product was purified by column chromatography (silica, PE/EE/NEt3 = 20/10/1). The product (R,SFc,RFc)- 5 was obtained as an orange foam (yield: 687 mg, 59%). M.p.: 58-61 C. 1H NMR (400 MHz, CDCl3): delta 1.37 (d, J = 6.8 Hz, 3H, CH3CH), 1.61 (s, 6H, N(CH3)2), 2.20 (s, 3H, Ph-CH3), 3.65 (q, J = 6.8 Hz, 1H, CH3CH), 4.11 (dd, J1 = 2.4 Hz, J2 = 1.4 Hz, 1H, H3), 4.27 (s, 5H, Cp?), 4.30 (dd, J1 = J2 = 2.4 Hz, 1H, H4), 4.35 (s, 5H, Cp?), 4.37 (dd, J1 = J2 = 2.5 Hz, 1H, H4?) 4.44 (dd, J1 = 2.5 Hz, J2 = 1.5 Hz, 1H, H3? 4.59 (dd, J1 = 2.5 Hz, J2 = 1.5 Hz, 1H, H5? 4.64 (dd, J1 = 2.4 Hz, J2 = 1.4 Hz, 1H, H5), 6.88 (d, J = 8.1 Hz, 2H, Ph-meta), 7.02 (d, J = 8.1 Hz, 2H, Ph-ortho). 13C{1H} NMR (100.6 MHz, CDCl3): delta 14.7 (CH3CH), 20.9 (Ph-CH3), 40.3 (2C, N(CH3)2), 55.4 (CH3CH), 66.1 (C4), 66.7 (C3), 67.9 (C4? 69.6 (5C, Cp’), 70.7 (5C, Cp?), 71.7 (C5? 72.4 (C5), 74.1 (C3? 89.8 (C2), 128.9 (2C, Ph-ortho), 129.1 (2C, Ph-meta), 135.1 (2C, Ph-ipso + Ph-para); 3 Cq (C1, C1? C2? were not observed. HR-MS (EI): m/z [M?]+ calcd. 563.1032 for C31H33Fe2NS; found: 563.1050. [alpha]lambda20 (nm): -660 (589), -746 (578), -1180 (546) (c 0.224, CHCl3).

The chemical industry reduces the impact on the environment during synthesis,31886-58-5,(R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine,I believe this compound will play a more active role in future production and life.

Reference£º
Article; Gross, Manuela A.; Mereiter, Kurt; Wang, Yaping; Weissensteiner, Walter; Journal of Organometallic Chemistry; vol. 716; (2012); p. 32 – 38;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Extracurricular laboratory: Synthetic route of 33527-91-2

33527-91-2, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,33527-91-2 ,Tris[2-(dimethylamino)ethyl]amine, other downstream synthetic routes, hurry up and to see

It is a common heterocyclic compound, the chiral-nitrogen-ligands compound, Tris[2-(dimethylamino)ethyl]amine, cas is 33527-91-2 its synthesis route is as follows.

To a solution of tris(2-dimethylaminoethyl)amine (0.436 g, 1.89 mmol) in acetonitrile (4 mL) was added 1-bromooctane (1.20 g, 6.22 mmol). The resulting mixture was heated at reflux with stirring for 18 hours, during which time a white solid was observed. After cooling, and the addition of a cold hexanes/acetone mixture (15 mL, 1:1), to the reaction flask, the precipitate was filtered with aBuchner funnel, and rinsed with a cold hexanes/acetone mixture (20 mL, 1:1), resulting in T-8,8,8 (1.45 g, 95%) as a yellow-white wax; ?H NMR (300 MI-Tz, CDC13) oe 4.02-3.94 (m, 6H), 3.63-3.54 (m, 6H), 3.42-3.30 (m, 24H), 1.79-1.67 (m, 6H), 1.41-1.19 (m, 30H), 0.90-0.83 (m, 9H); ?3C NMR (75 MHz, CD3OD) oe 65.3,61.0, 50.1, 46.8, 31.5, 28.9, 26.1, 22.4, 22.3, 13.1; high resolution mass spectrum(ESI) m/z 189.8823 ([Mj3 calculated for [C36H8,N4j3: 189.8815). See also Yoshimura et al., 2012, Langmuir 28:9322-933 1. ?H and ?3C NMR spectra of compound T-8,8,8 can be found in Figure 49.

33527-91-2, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,33527-91-2 ,Tris[2-(dimethylamino)ethyl]amine, other downstream synthetic routes, hurry up and to see

Reference£º
Patent; TEMPLE UNIVERSITY-OF THE COMMONWEALTH SYSTEM OF HIGHER EDUCATION; VILLANOVA UNIVERSITY; WUEST, William, M.; MINBIOLE, Kevin, P.C.; BARBAY, Deanna, L.; (227 pag.)WO2016/172436; (2016); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Some tips on (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine

31886-58-5, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,31886-58-5 ,(R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, other downstream synthetic routes, hurry up and to see

It is a common heterocyclic compound, the chiral-nitrogen-ligands compound, (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, cas is 31886-58-5 its synthesis route is as follows.

To a degassed solution of (R)-1 (829 mg, 3.22 mmol) in THF (4.5 mL) at -78 C was added dropwise sec-BuLi (1.4 M in cyclohexane, 2.5 mL, 3.55 mmol). The resulting deep red solution was stirred for 1 h at -78 C and for 2 h at 0 C. A solution of ZnBr2 (1.3 M in THF, 3.2 mL, 4.19 mmol) was added and the reaction mixture was stirred for further 40 min at 0 C. A degassed solution of [Pd2(dba)3] (148 mg, 0.162 mmol) and tri-(2-furyl)phosphine (tfp) (299 mg, 1.29 mmol) in THF (6 mL) was prepared and stirred for 20 min at r.t. to give a dark green clear solution. To this catalyst solution were transferred a degassed solution of (R,SFc)-1-iodo-2-p-tolylsulfinylferrocene, (R,SFc)-2, (900 mg, 2.00 mmol) in THF (15 mL) and the freshly prepared ferrocenyl-zinc compound. The resulting red-brown solution was heated to reflux under argon at 75 C for 19 h. The reaction mixture was cooled to r.t., quenched with 5 M NaOH (6 mL), diluted with water and extracted with ethyl acetate (3 ¡Á 70 mL). The combined organic phases were washed with water (3 ¡Á 50 mL) and brine (2 ¡Á 50 mL) and dried over MgSO4. The mixture was filtered and the solvent was evaporated. The crude product was purified by column chromatography (silica, PE/EE/NEt3 = 10/10/1 ? 1/2/1). After a second chromatography (aluminium oxide, PE/EE/NEt3 = 1/1/1 ? 1/2/1) was the pure product obtained as an orange solid (yield: 55 mg, 5%). Single crystals suitable for X-ray structure determination were obtained from a solution of the product in EtOAc/PE by slow evaporation of the solvents. M.p.: 158-163 C. 1H NMR (600.1 MHz, CDCl3): delta 1.51 (d, J = 6.9 Hz, 3H, CH3CH), 1.72 (s, 6H, N(CH3)2), 2.42 (s, 3H, Ph-CH3), 3.59 (q, J = 6.9 Hz, 1H, CH3CH), 4.09 (m, 1H, H3?), 4.24 (s, 6H, Cp? + H3), 4.27 (s, 5H, Cp?), 4.39 (dd, J1 = J2 = 2.5 Hz, 1H, H4), 4.42 (dd, J1 = J2 = 2.5 Hz, 1H, H4?), 4.70 (m, 1H, H5?), 4.76 (m, 1H, H5), 7.31 (d, J = 8.0 Hz, 2H, Ph-meta), 7.67 (d, J = 8.0 Hz, 2H, Ph-ortho). 13C{1H} NMR (150.9 MHz, CDCl3): delta 18.9 (bs, CH3CH), 21.5 (Ph-CH3), 40.9 (2C, N(CH3)2), 55.5 (CH3CH), 66.9 (C4), 67.8 (2C, C3 + C3?), 68.8 (C4?), 69.8 (5C, Cp?), 70.7 (5C, Cp?), 71.8 (C5), 73.9 (C5?), 82.0 (C1), 88.6 (C1?/C2?), 89.5 (C2), 93.9 (C1?/C2?), 125.7 (2C, Ph-ortho), 129.4 (2C, Ph-meta), 141.0 (Ph-ipso), 141.4 (Ph para). HR-MS (ESI, MeOH/MeCN): m/z [M + H]+ calcd. 580.1060 for C31H34Fe2NOS; found: 580.1047. [alpha]lambda20 (nm): -739 (589), -843 (578), -1380 (546) (c 0.225, CHCl3).

31886-58-5, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,31886-58-5 ,(R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, other downstream synthetic routes, hurry up and to see

Reference£º
Article; Gross, Manuela A.; Mereiter, Kurt; Wang, Yaping; Weissensteiner, Walter; Journal of Organometallic Chemistry; vol. 716; (2012); p. 32 – 38;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

The important role of 31886-58-5

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, 31886-58-5

31886-58-5, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, cas is 31886-58-5,the chiral-nitrogen-ligands compound, it is a common compound, a new synthetic route is introduced below.

15.4 ml of a cyclohexane solution of s-butyllithium (1.3 M, 22 mmol) are added to a solution of 5.14 g (20 mmol) of (R)-N, N-dimethyl-1 -ferrocenylethylamine [(R)-ugi- amine] in 30 ml of t-butyl methyl ether (TBME) at <20C over a period of 10 minutes. The mixture is then heated to 00C while stirring and maintained at this temperature for 1.5 hours. It is then cooled to <60C and 2.47 ml (20 mmol) of dichlororopropyl- phosphine are added over a period of 10 mintues. After stirring at -78C for30 minutes, the mixture is allowed to warm slowly to room temperature and is stirred at this temperature for 1.5 hours. Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, 31886-58-5 Reference£º
Patent; SOLVIAS AG; WO2008/55942; (2008); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Introduction of a new synthetic route about (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, 31886-58-5

31886-58-5, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, cas is 31886-58-5,the chiral-nitrogen-ligands compound, it is a common compound, a new synthetic route is introduced below.

15.4 ml of a cyclohexane solution of s-butyllithium (1.3 M, 22 mmol) are added to a solution of 5.14 g (20 mmol) of (R)-N, N-dimethyl-1 -ferrocenylethylamine [(R)-ugi- amine] in 30 ml of t-butyl methyl ether (TBME) at <20C over a period of 10 minutes. The mixture is then heated to 00C while stirring and maintained at this temperature for 1.5 hours. It is then cooled to <60C and 3.0 ml (20 mmol) of dichlorocyclohexyl- phosphine are added over a period of 10 minutes. After stirring at -78C for30 minutes, the mixture is allowed to warm slowly to room temperature and is stirred at this temperature for 1.5 hours. Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, 31886-58-5 Reference£º
Patent; SOLVIAS AG; WO2008/55942; (2008); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Some tips on (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine

The chemical industry reduces the impact on the environment during synthesis,31886-58-5,(R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine,I believe this compound will play a more active role in future production and life.

31886-58-5, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, cas is 31886-58-5,the chiral-nitrogen-ligands compound, it is a common compound, a new synthetic route is introduced below.

4.0 ml (5.2 mmol) of S-BuLi (1.3 M in cyclohexanone) are added dropwise at -78C with stirring to a solution of 1.29 g (5 mmol) of compound 15 in 5 ml of TBME. The temperature is then allowed to rise to room temperature and the mixture is stirred further for 1.5 h. The resulting suspension is then injected with elevated pressure (argon) through a cannula into a second vessel in which a solution of 0.44 ml (5 mmol) of PCI3 in 10 ml of TBME is stirred at -78C. After the addition, the temperature is allowed to rise to 00C, and the resulting suspension is stirred further for another 1.5 hours. After adding 10 ml of THF, reaction solution 1 comprising compound 16 is obtained.

The chemical industry reduces the impact on the environment during synthesis,31886-58-5,(R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine,I believe this compound will play a more active role in future production and life.

Reference£º
Patent; Solvias AG; WO2007/135179; (2007); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Some tips on Tris[2-(dimethylamino)ethyl]amine

33527-91-2, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,33527-91-2 ,Tris[2-(dimethylamino)ethyl]amine, other downstream synthetic routes, hurry up and to see

As a common heterocyclic compound, it belongs to chiral-nitrogen-ligands compound, name is Tris[2-(dimethylamino)ethyl]amine, and cas is 33527-91-2, its synthesis route is as follows.

General procedure: The copper complex Cu5-1 was dissolved in water, and an excessive amount of an aqueous solution of saturated sodium tetrafluoroborate (manufactured by Wako Pure Chemical Industries, Ltd.) was added while stirring. A precipitated solid was collected by filtering and a copper complex Cu5-72 was obtained.

33527-91-2, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,33527-91-2 ,Tris[2-(dimethylamino)ethyl]amine, other downstream synthetic routes, hurry up and to see

Reference£º
Patent; FUJIFILM Corporation; Sasaki, Kouitsu; Kawashima, Takashi; Hitomi, Seiichi; Shiraishi, Yasuharu; US10215898; (2019); B2;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis