Application of 1-Methylimidazolidin-2-one

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, 31886-58-5

In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact.31886-58-5, (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine it is a common compound, a new synthetic route is introduced below.31886-58-5

6.0g (R) -1- ferrocenyl ethyldimethylamine was added 20mL of dry tert-butyl methyl ether, in an ice bath, under an argon atmosphere was slowly added dropwise 21.5mL 1.3mol / L tert-butyllithium n-hexane solution, warmed to room temperature after dropwise addition, reaction was stirred for 1 hour and then added dropwise dissolved in 20mL of MTBE to the reaction solution at -78 deg.] C 5.52g of p-toluenesulfonyl azide, after the reaction at -78 5 h, slowly warmed to 0 deg.] C, stirred for 10 minutes, dissolved in 250mL of distilled water was added 11.6g of sodium pyrophosphate decahydrate, stirred at room temperature overnight, the reaction was stopped extracted with dichloromethane (3 ¡Á 80mL), the organic layer was dried over anhydrous magnesium sulfate, and rotary evaporation to obtain a reddish black oil, separated by column chromatography (eluent volume of ethyl acetate and triethylamine as the 30: 1 mixture, silica gel 300 to 400 mesh), to give a red-brown oil azide 5.7g, yield of 82%.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, 31886-58-5

Reference£º
Patent; Shaanxi Normal University; Chai Yonghai; Ren Xiaochen; He Chunyan; Chen Weiping; Zhang Shengyong; (14 pag.)CN104592313; (2017); B;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

The important role of 31886-58-5

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, 31886-58-5

(R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, A common heterocyclic compound, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.”31886-58-5

To a degassed solution of (R)-1 (662 mg, 2.57 mmol) in THF (3.2 mL) was added sec-BuLi (1.4 M in cyclohexane, 2 mL, 2.8 mmol) at 0 C. The resulting deep-red solution was stirred for an additional 3 h at the same temperature. To this reaction mixture was added a solution of ZnBr2 (1.3 M in THF, 2.38 mL, 3.09 mmol) at 0 C and stirring was continued at r.t. for 1 h. To a degassed solution of [Pd2dba3]¡¤CHCl3 (266 mg, 0.257 mmol) and tris(2,4-di-tert-butylphenyl)-phosphite (666 mg, 1.029 mmol) in THF (5.5 mL) was added a degassed solution of sulfide (S)- 4 (890 mg, 2.05 mmol) in THF (3 mL). The resulting dark purple solution was stirred for an additional 10 min at r.t. and was subsequently added dropwise to the previously prepared organozinc compound. The reaction mixture was heated to reflux under argon at 75 C for 18 h, and then cooled to r.t., quenched with H2O and extracted with ethyl acetate (3 ¡Á 200 mL). The combined organic layers were washed with brine (3 ¡Á 200 mL) and dried over MgSO4. The mixture was filtered, the solvent was evaporated and the crude product was purified by column chromatography (silica, PE/EE/NEt3 = 20/10/1). The product (R,SFc,RFc)- 5 was obtained as an orange foam (yield: 687 mg, 59%). M.p.: 58-61 C. 1H NMR (400 MHz, CDCl3): delta 1.37 (d, J = 6.8 Hz, 3H, CH3CH), 1.61 (s, 6H, N(CH3)2), 2.20 (s, 3H, Ph-CH3), 3.65 (q, J = 6.8 Hz, 1H, CH3CH), 4.11 (dd, J1 = 2.4 Hz, J2 = 1.4 Hz, 1H, H3), 4.27 (s, 5H, Cp?), 4.30 (dd, J1 = J2 = 2.4 Hz, 1H, H4), 4.35 (s, 5H, Cp?), 4.37 (dd, J1 = J2 = 2.5 Hz, 1H, H4?) 4.44 (dd, J1 = 2.5 Hz, J2 = 1.5 Hz, 1H, H3? 4.59 (dd, J1 = 2.5 Hz, J2 = 1.5 Hz, 1H, H5? 4.64 (dd, J1 = 2.4 Hz, J2 = 1.4 Hz, 1H, H5), 6.88 (d, J = 8.1 Hz, 2H, Ph-meta), 7.02 (d, J = 8.1 Hz, 2H, Ph-ortho). 13C{1H} NMR (100.6 MHz, CDCl3): delta 14.7 (CH3CH), 20.9 (Ph-CH3), 40.3 (2C, N(CH3)2), 55.4 (CH3CH), 66.1 (C4), 66.7 (C3), 67.9 (C4? 69.6 (5C, Cp’), 70.7 (5C, Cp?), 71.7 (C5? 72.4 (C5), 74.1 (C3? 89.8 (C2), 128.9 (2C, Ph-ortho), 129.1 (2C, Ph-meta), 135.1 (2C, Ph-ipso + Ph-para); 3 Cq (C1, C1? C2? were not observed. HR-MS (EI): m/z [M?]+ calcd. 563.1032 for C31H33Fe2NS; found: 563.1050. [alpha]lambda20 (nm): -660 (589), -746 (578), -1180 (546) (c 0.224, CHCl3).

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, 31886-58-5

Reference£º
Article; Gross, Manuela A.; Mereiter, Kurt; Wang, Yaping; Weissensteiner, Walter; Journal of Organometallic Chemistry; vol. 716; (2012); p. 32 – 38;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Extracurricular laboratory: Synthetic route of 33527-91-2

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Tris[2-(dimethylamino)ethyl]amine, 33527-91-2

Tris[2-(dimethylamino)ethyl]amine, A common heterocyclic compound, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.”33527-91-2

To a solution of tris(2-dimethylaminoethyl)amine (0.436 g, 1.89 mmol) in acetonitrile (4 mL) was added 1-bromooctane (1.20 g, 6.22 mmol). The resulting mixture was heated at reflux with stirring for 18 hours, during which time a white solid was observed. After cooling, and the addition of a cold hexanes/acetone mixture (15 mL, 1:1), to the reaction flask, the precipitate was filtered with aBuchner funnel, and rinsed with a cold hexanes/acetone mixture (20 mL, 1:1), resulting in T-8,8,8 (1.45 g, 95%) as a yellow-white wax; ?H NMR (300 MI-Tz, CDC13) oe 4.02-3.94 (m, 6H), 3.63-3.54 (m, 6H), 3.42-3.30 (m, 24H), 1.79-1.67 (m, 6H), 1.41-1.19 (m, 30H), 0.90-0.83 (m, 9H); ?3C NMR (75 MHz, CD3OD) oe 65.3,61.0, 50.1, 46.8, 31.5, 28.9, 26.1, 22.4, 22.3, 13.1; high resolution mass spectrum(ESI) m/z 189.8823 ([Mj3 calculated for [C36H8,N4j3: 189.8815). See also Yoshimura et al., 2012, Langmuir 28:9322-933 1. ?H and ?3C NMR spectra of compound T-8,8,8 can be found in Figure 49.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Tris[2-(dimethylamino)ethyl]amine, 33527-91-2

Reference£º
Patent; TEMPLE UNIVERSITY-OF THE COMMONWEALTH SYSTEM OF HIGHER EDUCATION; VILLANOVA UNIVERSITY; WUEST, William, M.; MINBIOLE, Kevin, P.C.; BARBAY, Deanna, L.; (227 pag.)WO2016/172436; (2016); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Some tips on (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, 31886-58-5

(R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, A common heterocyclic compound, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.”31886-58-5

To a degassed solution of (R)-1 (829 mg, 3.22 mmol) in THF (4.5 mL) at -78 C was added dropwise sec-BuLi (1.4 M in cyclohexane, 2.5 mL, 3.55 mmol). The resulting deep red solution was stirred for 1 h at -78 C and for 2 h at 0 C. A solution of ZnBr2 (1.3 M in THF, 3.2 mL, 4.19 mmol) was added and the reaction mixture was stirred for further 40 min at 0 C. A degassed solution of [Pd2(dba)3] (148 mg, 0.162 mmol) and tri-(2-furyl)phosphine (tfp) (299 mg, 1.29 mmol) in THF (6 mL) was prepared and stirred for 20 min at r.t. to give a dark green clear solution. To this catalyst solution were transferred a degassed solution of (R,SFc)-1-iodo-2-p-tolylsulfinylferrocene, (R,SFc)-2, (900 mg, 2.00 mmol) in THF (15 mL) and the freshly prepared ferrocenyl-zinc compound. The resulting red-brown solution was heated to reflux under argon at 75 C for 19 h. The reaction mixture was cooled to r.t., quenched with 5 M NaOH (6 mL), diluted with water and extracted with ethyl acetate (3 ¡Á 70 mL). The combined organic phases were washed with water (3 ¡Á 50 mL) and brine (2 ¡Á 50 mL) and dried over MgSO4. The mixture was filtered and the solvent was evaporated. The crude product was purified by column chromatography (silica, PE/EE/NEt3 = 10/10/1 ? 1/2/1). After a second chromatography (aluminium oxide, PE/EE/NEt3 = 1/1/1 ? 1/2/1) was the pure product obtained as an orange solid (yield: 55 mg, 5%). Single crystals suitable for X-ray structure determination were obtained from a solution of the product in EtOAc/PE by slow evaporation of the solvents. M.p.: 158-163 C. 1H NMR (600.1 MHz, CDCl3): delta 1.51 (d, J = 6.9 Hz, 3H, CH3CH), 1.72 (s, 6H, N(CH3)2), 2.42 (s, 3H, Ph-CH3), 3.59 (q, J = 6.9 Hz, 1H, CH3CH), 4.09 (m, 1H, H3?), 4.24 (s, 6H, Cp? + H3), 4.27 (s, 5H, Cp?), 4.39 (dd, J1 = J2 = 2.5 Hz, 1H, H4), 4.42 (dd, J1 = J2 = 2.5 Hz, 1H, H4?), 4.70 (m, 1H, H5?), 4.76 (m, 1H, H5), 7.31 (d, J = 8.0 Hz, 2H, Ph-meta), 7.67 (d, J = 8.0 Hz, 2H, Ph-ortho). 13C{1H} NMR (150.9 MHz, CDCl3): delta 18.9 (bs, CH3CH), 21.5 (Ph-CH3), 40.9 (2C, N(CH3)2), 55.5 (CH3CH), 66.9 (C4), 67.8 (2C, C3 + C3?), 68.8 (C4?), 69.8 (5C, Cp?), 70.7 (5C, Cp?), 71.8 (C5), 73.9 (C5?), 82.0 (C1), 88.6 (C1?/C2?), 89.5 (C2), 93.9 (C1?/C2?), 125.7 (2C, Ph-ortho), 129.4 (2C, Ph-meta), 141.0 (Ph-ipso), 141.4 (Ph para). HR-MS (ESI, MeOH/MeCN): m/z [M + H]+ calcd. 580.1060 for C31H34Fe2NOS; found: 580.1047. [alpha]lambda20 (nm): -739 (589), -843 (578), -1380 (546) (c 0.225, CHCl3).

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, 31886-58-5

Reference£º
Article; Gross, Manuela A.; Mereiter, Kurt; Wang, Yaping; Weissensteiner, Walter; Journal of Organometallic Chemistry; vol. 716; (2012); p. 32 – 38;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

The important role of 31886-58-5

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, 31886-58-5

31886-58-5, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact.31886-58-5, (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine it is a common compound, a new synthetic route is introduced below.

15.4 ml of a cyclohexane solution of s-butyllithium (1.3 M, 22 mmol) are added to a solution of 5.14 g (20 mmol) of (R)-N, N-dimethyl-1 -ferrocenylethylamine [(R)-ugi- amine] in 30 ml of t-butyl methyl ether (TBME) at <20C over a period of 10 minutes. The mixture is then heated to 00C while stirring and maintained at this temperature for 1.5 hours. It is then cooled to <60C and 2.47 ml (20 mmol) of dichlororopropyl- phosphine are added over a period of 10 mintues. After stirring at -78C for30 minutes, the mixture is allowed to warm slowly to room temperature and is stirred at this temperature for 1.5 hours. Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, 31886-58-5 Reference£º
Patent; SOLVIAS AG; WO2008/55942; (2008); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

The important role of 33527-91-2

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Tris[2-(dimethylamino)ethyl]amine, 33527-91-2

33527-91-2, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact.33527-91-2, Tris[2-(dimethylamino)ethyl]amine it is a common compound, a new synthetic route is introduced below.

To a mixture of Cu(NO3)22.5H2O (0.504 g, 2.17 mmol) in MeOH(15.0 mL), was added tris[2-(dimethylamino)ethyl]amine (L4)(0.500 g, 2.17 mmol) and stirred at RT. The blue solution was evaporatedunder reduced pressure to afford a yellow solid. The solidwas dissolved again in MeOH and diffused with diethyl ether. Suitableblue block-shaped crystals were obtained in 2 days. Yield(0.921 g, 98%).

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Tris[2-(dimethylamino)ethyl]amine, 33527-91-2

Reference£º
Article; Sivanesan, Dharmalingam; Seo, Bongkuk; Lim, Choong-Sun; Kim, Hyeon-Gook; Journal of Catalysis; vol. 382; (2020); p. 121 – 128;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Introduction of a new synthetic route about (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, 31886-58-5

(R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, A common heterocyclic compound, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.”31886-58-5

15.4 ml of a cyclohexane solution of s-butyllithium (1.3 M, 22 mmol) are added to a solution of 5.14 g (20 mmol) of (R)-N, N-dimethyl-1 -ferrocenylethylamine [(R)-ugi- amine] in 30 ml of t-butyl methyl ether (TBME) at <20C over a period of 10 minutes. The mixture is then heated to 00C while stirring and maintained at this temperature for 1.5 hours. It is then cooled to <60C and 3.0 ml (20 mmol) of dichlorocyclohexyl- phosphine are added over a period of 10 minutes. After stirring at -78C for30 minutes, the mixture is allowed to warm slowly to room temperature and is stirred at this temperature for 1.5 hours. Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, 31886-58-5 Reference£º
Patent; SOLVIAS AG; WO2008/55942; (2008); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Some tips on (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, 31886-58-5

(R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, A common heterocyclic compound, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.”31886-58-5

4.0 ml (5.2 mmol) of S-BuLi (1.3 M in cyclohexanone) are added dropwise at -78C with stirring to a solution of 1.29 g (5 mmol) of compound 15 in 5 ml of TBME. The temperature is then allowed to rise to room temperature and the mixture is stirred further for 1.5 h. The resulting suspension is then injected with elevated pressure (argon) through a cannula into a second vessel in which a solution of 0.44 ml (5 mmol) of PCI3 in 10 ml of TBME is stirred at -78C. After the addition, the temperature is allowed to rise to 00C, and the resulting suspension is stirred further for another 1.5 hours. After adding 10 ml of THF, reaction solution 1 comprising compound 16 is obtained.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, 31886-58-5

Reference£º
Patent; Solvias AG; WO2007/135179; (2007); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Some tips on Tris[2-(dimethylamino)ethyl]amine

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Tris[2-(dimethylamino)ethyl]amine, 33527-91-2

Tris[2-(dimethylamino)ethyl]amine, A common heterocyclic compound, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.”33527-91-2

General procedure: The copper complex Cu5-1 was dissolved in water, and an excessive amount of an aqueous solution of saturated sodium tetrafluoroborate (manufactured by Wako Pure Chemical Industries, Ltd.) was added while stirring. A precipitated solid was collected by filtering and a copper complex Cu5-72 was obtained.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Tris[2-(dimethylamino)ethyl]amine, 33527-91-2

Reference£º
Patent; FUJIFILM Corporation; Sasaki, Kouitsu; Kawashima, Takashi; Hitomi, Seiichi; Shiraishi, Yasuharu; US10215898; (2019); B2;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Share a compound : 33527-91-2

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Tris[2-(dimethylamino)ethyl]amine, 33527-91-2

Tris[2-(dimethylamino)ethyl]amine, A common heterocyclic compound, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.”33527-91-2

To a solution of tris(2-dimethylaminoethyl)amine (0.326 g, 1.41 mmol) in acetonitrile (4 mL) was added 1-bromooctadecane (1.41g, 4.23 mmol). The resulting mixture was heated at reflux with stirring for 23 hours, during which time a white solid was observed. After cooling, and the addition of a cold hexanes/acetonemixture (15 mL, 1:1), to the reaction flask, the precipitate was filtered with a Buchner funnel, and rinsed with a cold hexanes/acetone mixture (20 mL, 1:1), resulting in T-18,18,18 (1.48 g, 85%) as a white powder; mp=227-259 C; ?H NMR (300 JVII-Tz, CDC13) oe 4.13-4.02 (m, 6H), 3.65-3.58 (m, 6H), 3.46-3.38 (m, 6H), 3.35 (s, 18H), 1.78-1.66 (m, 6H), 1.41-1.37 (m, 90H), 0.89-0.82 (m, 9H); high resolutionmass spectrum (ESI) in/z 330.0376 ([Mj3 calculated for [C66H,4,N4j3: 330.0380). ?H spectmm of compound T-18,18,18 can be found in Figure 55.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Tris[2-(dimethylamino)ethyl]amine, 33527-91-2

Reference£º
Patent; TEMPLE UNIVERSITY-OF THE COMMONWEALTH SYSTEM OF HIGHER EDUCATION; VILLANOVA UNIVERSITY; WUEST, William, M.; MINBIOLE, Kevin, P.C.; BARBAY, Deanna, L.; (227 pag.)WO2016/172436; (2016); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis