Fun Route: New Discovery of Tris[2-(dimethylamino)ethyl]amine

This molecular description is the mechanism of the reaction; it describes how individual atoms, ions, or molecules interact to form particular products.If you are interested, you can also browse other articles of 33527-91-2, We look forward to the emergence of more reaction modes in the future.

33527-91-2, Rate laws may be derived directly from the chemical equations for elementary reactions. This is not the case, however, for ordinary chemical reactions.33527-91-2, name is Tris[2-(dimethylamino)ethyl]amine, below Introduce a new synthetic route.

LiBH4 (22 mg, 1 mmol) and Me6TREN (0.52 mL, 2 mmol) wereadded to 5 mL of THF. This was heated to reflux for 1 h at whichpoint the heat and stirrer were turned off. Slow cooling of the solutionyielded X-ray quality colorless crystals (40 mg, 16%).1H NMR (400.1 MHz, C6D6, 300 K): delta 2.11 (s, 18H, Me6TREN Me),1.94, 1.90 (overlapping br s, 12H, Me6TREN CH2), 0.59 ppm(quartet/septet, 4H, BH4, 1J10BH = 27.5 Hz, 1J11BH = 81.5 Hz).13C NMR (100.6 MHz, C6D6, 300 K): delta 57.0 (CH2), 51.2 (CH2),45.7 ppm (Me).7Li NMR (155.5 MHz, C6D6, 300 K): delta 0.29 ppm.11B NMR (128.3 MHz, C6D6, 300 K): delta 39.5 ppm (quin,1JBH = 81.2 Hz).Elemental analysis for C12H34N4LiB: Calc.: C, 57.15; H, 13.59; N,22.22. Found: C, 57.16; H, 13.48; N, 22.59%.

This molecular description is the mechanism of the reaction; it describes how individual atoms, ions, or molecules interact to form particular products.If you are interested, you can also browse other articles of 33527-91-2, We look forward to the emergence of more reaction modes in the future.

Reference£º
Article; Kennedy, Alan R.; McLellan, Ross; McNeil, Greg J.; Mulvey, Robert E.; Robertson, Stuart D.; Polyhedron; vol. 103; (2016); p. 94 – 99;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

The effect of 31886-58-5 reaction temperature change on equilibrium

31886-58-5, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,31886-58-5 ,(R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, other downstream synthetic routes, hurry up and to see

One of the major reasons is to use measurements of the macroscopic properties of a system, such as the rate of change in the concentration of reactants or products with time, to discover the sequence of events that occur at the molecular level.31886-58-5, (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, introduce a new downstream synthesis route. 31886-58-5

To a degassed solution of (R)-1 (829 mg, 3.22 mmol) in THF (4.5 mL) at -78 C was added dropwise sec-BuLi (1.4 M in cyclohexane, 2.5 mL, 3.55 mmol). The resulting deep red solution was stirred for 1 h at -78 C and for 2 h at 0 C. A solution of ZnBr2 (1.3 M in THF, 3.2 mL, 4.19 mmol) was added and the reaction mixture was stirred for further 40 min at 0 C. A degassed solution of [Pd2(dba)3] (148 mg, 0.162 mmol) and tri-(2-furyl)phosphine (tfp) (299 mg, 1.29 mmol) in THF (6 mL) was prepared and stirred for 20 min at r.t. to give a dark green clear solution. To this catalyst solution were transferred a degassed solution of (R,SFc)-1-iodo-2-p-tolylsulfinylferrocene, (R,SFc)-2, (900 mg, 2.00 mmol) in THF (15 mL) and the freshly prepared ferrocenyl-zinc compound. The resulting red-brown solution was heated to reflux under argon at 75 C for 19 h. The reaction mixture was cooled to r.t., quenched with 5 M NaOH (6 mL), diluted with water and extracted with ethyl acetate (3 ¡Á 70 mL). The combined organic phases were washed with water (3 ¡Á 50 mL) and brine (2 ¡Á 50 mL) and dried over MgSO4. The mixture was filtered and the solvent was evaporated. The crude product was purified by column chromatography (silica, PE/EE/NEt3 = 10/10/1 ? 1/2/1). After a second chromatography (aluminium oxide, PE/EE/NEt3 = 1/1/1 ? 1/2/1) was the pure product obtained as an orange solid (yield: 55 mg, 5%). Single crystals suitable for X-ray structure determination were obtained from a solution of the product in EtOAc/PE by slow evaporation of the solvents. M.p.: 158-163 C. 1H NMR (600.1 MHz, CDCl3): delta 1.51 (d, J = 6.9 Hz, 3H, CH3CH), 1.72 (s, 6H, N(CH3)2), 2.42 (s, 3H, Ph-CH3), 3.59 (q, J = 6.9 Hz, 1H, CH3CH), 4.09 (m, 1H, H3?), 4.24 (s, 6H, Cp? + H3), 4.27 (s, 5H, Cp?), 4.39 (dd, J1 = J2 = 2.5 Hz, 1H, H4), 4.42 (dd, J1 = J2 = 2.5 Hz, 1H, H4?), 4.70 (m, 1H, H5?), 4.76 (m, 1H, H5), 7.31 (d, J = 8.0 Hz, 2H, Ph-meta), 7.67 (d, J = 8.0 Hz, 2H, Ph-ortho). 13C{1H} NMR (150.9 MHz, CDCl3): delta 18.9 (bs, CH3CH), 21.5 (Ph-CH3), 40.9 (2C, N(CH3)2), 55.5 (CH3CH), 66.9 (C4), 67.8 (2C, C3 + C3?), 68.8 (C4?), 69.8 (5C, Cp?), 70.7 (5C, Cp?), 71.8 (C5), 73.9 (C5?), 82.0 (C1), 88.6 (C1?/C2?), 89.5 (C2), 93.9 (C1?/C2?), 125.7 (2C, Ph-ortho), 129.4 (2C, Ph-meta), 141.0 (Ph-ipso), 141.4 (Ph para). HR-MS (ESI, MeOH/MeCN): m/z [M + H]+ calcd. 580.1060 for C31H34Fe2NOS; found: 580.1047. [alpha]lambda20 (nm): -739 (589), -843 (578), -1380 (546) (c 0.225, CHCl3).

31886-58-5, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,31886-58-5 ,(R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, other downstream synthetic routes, hurry up and to see

Reference£º
Article; Gross, Manuela A.; Mereiter, Kurt; Wang, Yaping; Weissensteiner, Walter; Journal of Organometallic Chemistry; vol. 716; (2012); p. 32 – 38;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Flexible application of Tris[2-(dimethylamino)ethyl]amine in synthetic route

A chemical reaction often occurs in steps, although it may not always be obvious to an observer. Thank you very much for taking the time to read this article. If you are also interested in other aspects of Tris[2-(dimethylamino)ethyl]amine, CAS: 33527-91-2, you can also browse my other articles.

The molecularity of an elementary reaction is the number of molecules that collide during that step in the mechanism. If there is only a single reactant molecule in an elementary reaction, that step is designated as unimolecular.33527-91-2, name is Tris[2-(dimethylamino)ethyl]amine. A new synthetic method of this compound is introduced below. , 33527-91-2

To a solution of tris(2-dimethylaminoethyl)amine (0.326 g, 1.41 mmol) in acetonitrile (4 mL) was added 1-bromooctadecane (1.41g, 4.23 mmol). The resulting mixture was heated at reflux with stirring for 23 hours, during which time a white solid was observed. After cooling, and the addition of a cold hexanes/acetonemixture (15 mL, 1:1), to the reaction flask, the precipitate was filtered with a Buchner funnel, and rinsed with a cold hexanes/acetone mixture (20 mL, 1:1), resulting in T-18,18,18 (1.48 g, 85%) as a white powder; mp=227-259 C; ?H NMR (300 JVII-Tz, CDC13) oe 4.13-4.02 (m, 6H), 3.65-3.58 (m, 6H), 3.46-3.38 (m, 6H), 3.35 (s, 18H), 1.78-1.66 (m, 6H), 1.41-1.37 (m, 90H), 0.89-0.82 (m, 9H); high resolutionmass spectrum (ESI) in/z 330.0376 ([Mj3 calculated for [C66H,4,N4j3: 330.0380). ?H spectmm of compound T-18,18,18 can be found in Figure 55.

A chemical reaction often occurs in steps, although it may not always be obvious to an observer. Thank you very much for taking the time to read this article. If you are also interested in other aspects of Tris[2-(dimethylamino)ethyl]amine, CAS: 33527-91-2, you can also browse my other articles.

Reference£º
Patent; TEMPLE UNIVERSITY-OF THE COMMONWEALTH SYSTEM OF HIGHER EDUCATION; VILLANOVA UNIVERSITY; WUEST, William, M.; MINBIOLE, Kevin, P.C.; BARBAY, Deanna, L.; (227 pag.)WO2016/172436; (2016); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Fun Route: New Discovery of Tris[2-(dimethylamino)ethyl]amine

Thank you very much for taking the time to read this article. If you are also interested in other aspects of Tris[2-(dimethylamino)ethyl]amine, CAS: 33527-91-2, you can also browse my other articles.

33527-91-2, Rate laws may be derived directly from the chemical equations for elementary reactions. This is not the case, however, for ordinary chemical reactions.33527-91-2, name is Tris[2-(dimethylamino)ethyl]amine, below Introduce a new synthetic route.

General procedure: The copper complex Cu5-1 was dissolved in water, and an excessive amount of an aqueous solution of saturated sodium tetrafluoroborate (manufactured by Wako Pure Chemical Industries, Ltd.) was added while stirring. A precipitated solid was collected by filtering and a copper complex Cu5-72 was obtained.

Thank you very much for taking the time to read this article. If you are also interested in other aspects of Tris[2-(dimethylamino)ethyl]amine, CAS: 33527-91-2, you can also browse my other articles.

Reference£º
Patent; FUJIFILM Corporation; Sasaki, Kouitsu; Kawashima, Takashi; Hitomi, Seiichi; Shiraishi, Yasuharu; US10215898; (2019); B2;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

The effect of 33527-91-2 reaction temperature change on equilibrium

This molecular description is the mechanism of the reaction; it describes how individual atoms, ions, or molecules interact to form particular products.If you are interested, you can also browse other articles of 33527-91-2, We look forward to the emergence of more reaction modes in the future.

33527-91-2, Rate laws may be derived directly from the chemical equations for elementary reactions. This is not the case, however, for ordinary chemical reactions.33527-91-2, name is Tris[2-(dimethylamino)ethyl]amine, below Introduce a new synthetic route.

Embodiment 5Production of [Cu(Me6tren)]BPh4 0.20 g (0.87 mmol) Me6tren (1) was dissolved in approx. 2 ml acetone and a solution of 0.30 g (0.81 mmol) [Cu(CH3CN)4]PF6 (tetrakis(acetonitrile)copper(I)-hexafluorophosphate) in approx. 4 ml acetone was added slowly under constant stirring. A solution of 0.28 g (0.82 mmol) NaBPh4 (sodium tetraphenylborate) in approx. 2 mL acetone was added subsequently to the colorless, complex solution thus obtained, for the replacement of anions. For the preparation of the solid, the complex solution was added to 20 ml diethylether. The voluminous solid of [Cu(Me6tren)]BPh4 (10) obtained was dried in vacuum. 0.48 g (96.6%) of a colorless powder was obtained as the product.All work was carried out in an argon box. It is possible, however, to carry out all work with the Schlenk technique under argon or nitrogen as well.The complex [Cu(Me6tren)]BPh4 is shown in FIG. 1.The results of the crystal structure analysis of [Cu(Me6tren)]BPh4 are shown in FIG. 2.

This molecular description is the mechanism of the reaction; it describes how individual atoms, ions, or molecules interact to form particular products.If you are interested, you can also browse other articles of 33527-91-2, We look forward to the emergence of more reaction modes in the future.

Reference£º
Patent; Schindler, Siegfried; Wuertele, Christian; US2012/16127; (2012); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

The effect of the change of Tris[2-(dimethylamino)ethyl]amine synthetic route on the product

There are, however, a few established termolecular elementary reactions. The reaction of nitric oxide with oxygen appears to involve termolecular steps. you can also browse my other articles about Tris[2-(dimethylamino)ethyl]amine, CAS: 33527-91-2

One of the major reasons is to use measurements of the macroscopic properties of a system, such as the rate of change in the concentration of reactants or products with time, to discover the sequence of events that occur at the molecular level.33527-91-2, Tris[2-(dimethylamino)ethyl]amine, introduce a new downstream synthesis route. 33527-91-2

General procedure: The copper complex Cu5-1 was dissolved in water, and an excessive amount of an aqueous solution of saturated sodium tetrafluoroborate (manufactured by Wako Pure Chemical Industries, Ltd.) was added while stirring. A precipitated solid was collected by filtering and a copper complex Cu5-72 was obtained.

There are, however, a few established termolecular elementary reactions. The reaction of nitric oxide with oxygen appears to involve termolecular steps. you can also browse my other articles about Tris[2-(dimethylamino)ethyl]amine, CAS: 33527-91-2

Reference£º
Patent; FUJIFILM Corporation; Sasaki, Kouitsu; Kawashima, Takashi; Hitomi, Seiichi; Shiraishi, Yasuharu; US10215898; (2019); B2;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

The effect of the change of (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine synthetic route on the product

There are, however, a few established termolecular elementary reactions. The reaction of nitric oxide with oxygen appears to involve termolecular steps. you can also browse my other articles about (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, CAS: 31886-58-5

Rate laws may be derived directly from the chemical equations for elementary reactions. This is not the case, however, for ordinary chemical reactions.31886-58-5, name is (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, below Introduce a new synthetic route. , 31886-58-5

Example B18: Reaction schemeX24 ml (10 mmol) of n-BuLi (2.5 M in hexane) are added dropwise to a solution of 3.44 g (10 mmol) of 1 ,1 ‘-dibromoferrocene in 10 ml of tetrahydrofuran (THF) at a temperature of < -30C. The mixture is stirred at this temperature for a further 1.5 hours. 2.21 ml (10 mmol) of dicyclohexylphosphine chloride are then added dropwise at such a rate that the temperature does not exceed -20C. After stirring the mixture for a further 10 minutes, the temperature is allowed to rise to room temperature and the mixture is stirred for another one hour. It is cooled back down to 30C and 4.4 ml (11 mmol) of n-BuLi (2.5 M in hexane) are added dropwise. The mixture is subsequently stirred at -10C for 30 minutes. The reaction mixture is then cooled to -78C and 1.49 ml (11 mmol) of dichlorophenylphosphine are added. The mixture is stirred at -78C for 20 minutes and then at room temperature for a further one hour. This gives a reaction mixture comprising the monochlorodiphosphine X6. In a second vessel, 8.5 ml (11 mmol) of S-BuLi (1.3 M in cyclohexane) are added dropwise to a solution of 2.57 g (10 mmol) of (R)-1-dimethylamino-1-ferrocenylethane in 15 ml of diethyl ether at <-10C. After stirring the mixture at the same temperature for 10 minutes, the temperature is allowed to rise to 0C and the mixture is stirred for another 1.5 hours. This reaction solution is subsequently added by means of a cannula to the reaction mixture comprising the monochlorodiphosphine X6 which has been cooled to -10C. After the addition, the mixture is stirred at room temperature for another 2 hours. After addition of 10 ml of water, the reaction mixture is extracted, the organic phase is dried over sodium sulphate and the solvent is distilled off under reduced pressure on a rotary evaporator. The residue is heated at 140C for one hour. Column chromatography (silica gel 60; eluent: hexane/ethyl acetate 4:1 ) gives the compound of the formula (B1 ) in a yield of 47%. 31P- and 1H-NMR of the product are identical with those of Example B1.; Example B19: Reaction schemeReaction mixture 1 : 4 ml (10 mmol) of n-BuLi (2.5 M in hexane) are added dropwise to a solution of 3.44 g (10 mmol) of 1 ,1 '-dibromoferrocene in 10 ml of tetrahydrofuran (THF) at a temperature of < -30C. The mixture is stirred at this temperature for a further 30 minutes. It is then cooled to -78C and 1.36 ml (10 mmol) of phenyldichlorophosphine are added. After stirring the mixture for a further 10 minutes, the temperature is allowed to rise to room temperature and the mixture is stirred for another one hour.Reaction mixture 2: In a second vessel, 8.0 ml (10.4 mmol) of S-BuLi (1.3 M in cyclohexane) are added dropwise to a solution of 2.57 g (10 mmol) of (R)-1-dimethylamino-1-ferrocenyl- ethane in 15 ml of diethyl ether at <-10C. After stirring the mixture at the same temperature for 10 minutes, the temperature is allowed to rise to 0C and the mixture is stirred for another 1.5 hours.The reaction mixture 1 is slowly added to the reaction mixture 2 at a temperature below -10C. The mixture is subsequently stirred at room temperature for 1.5 hours. At a temperature in the range from -78C to -50C, 8 ml (10.4 mmol) of S-BuLi (1.3 M in cyclohexane) are then added dropwise. After stirring the mixture at -78C for 20 minutes, the temperature is allowed to rise to 0C and the mixture is stirred for a further 30 minutes before 2.21 ml (10 mmol) of chloro- dicyclohexylphosphine are added at -20C. The mixture is stirred at 20C for another 20 minutes and finally at room temperature for another 1.5 hours. The work-up and thermal epimerization are carried out in a manner analogous to that described in Example B18. The compound of the formula (B1 ) is obtained in a yield of 31 %. 31P- and 1H-NMR of the product are identical with those of Example B1.; Example B20:8.5 ml (11 mmol) of S-BuLi (1.3 M in cyclohexane) are added dropwise to a solution of 2.83 g (1 1 mmol) of (R)-1 -dimethylamino-1 -ferrocenylethane in 15 ml of diethyl ether at <-10C. The cooling is then removed and the mixture is stirred at room temperature for another 2 hours. After cooling to -10C, 2.92 g (10 mmol) of the compound A3 are added and the mixture is stirred at this temperature for a further 30 minutes. The temperature is allowed to rise to room temperature and the mixture is stirred for another one hour. After addition of 10 ml of 1 N NaOH, the reaction mixture is extracted, the organic phase is dried over sodium sulphate and the solvent is distilled off under reduced pressure on a rotary evaporator. A 1H-NMR of the residue shows that the reaction is very stereoselective and gives virtually exclusively the desired diastereomer (RC,SFC, Sp)-I -[2-(1 -dimethylaminoethyl)ferrocen-1 -yl]phenylphosphino- 1 '-dicyclohexylphosphinoferrocene. After chromatography (silica gel 60; eluent = hexane/ethyl acetate 4:1 ), this product is obtained in a yield of 37%. 31P- and 1H-NMR of the produ…

There are, however, a few established termolecular elementary reactions. The reaction of nitric oxide with oxygen appears to involve termolecular steps. you can also browse my other articles about (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, CAS: 31886-58-5

Reference£º
Patent; SOLVIAS AG; WO2007/116081; (2007); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Flexible application of (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine in synthetic route

31886-58-5, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,31886-58-5 ,(R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, other downstream synthetic routes, hurry up and to see

The molecularity of an elementary reaction is the number of molecules that collide during that step in the mechanism. If there is only a single reactant molecule in an elementary reaction, that step is designated as unimolecular.31886-58-5, name is (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine. A new synthetic method of this compound is introduced below. , 31886-58-5

(S)-Ugi-amine 1 (5.14g, 20mmol) was dissolved in 50mL of diethyl ether. Under nitrogen and ice salt bath cooling, n-butyl lithium (16mL, 2.5mol / L) was added dropwise to the reaction system, After the completion, the temperature was slowly raised to room temperature, and the reaction was stirred for 3 hours. Chlorodiphenylphosphine (8.82 g, 40 mmol) was added dropwise under ice-cooling, and the mixture was slowly warmed to room temperature and stirred for 12 hours. The reaction was quenched with saturated sodium bicarbonate solution. Extracted with dichloromethane, dried over anhydrous sodium sulfate, concentration, column chromatography to obtain compound 2 (5.38g, 61%).

31886-58-5, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,31886-58-5 ,(R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, other downstream synthetic routes, hurry up and to see

Reference£º
Patent; Zhejiang University of Technology; Zhong Weihui; Ling Fei; Nian Sanfei; (14 pag.)CN108774271; (2018); A;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Derivation of elementary reaction about 31886-58-5

31886-58-5, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,31886-58-5 ,(R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, other downstream synthetic routes, hurry up and to see

31886-58-5, The molecularity of an elementary reaction is the number of molecules that collide during that step in the mechanism. If there is only a single reactant molecule in an elementary reaction, that step is designated as unimolecular.31886-58-5, name is (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine. A new synthetic method of this compound is introduced below.

To a degassed solution of (R)-1 (662 mg, 2.57 mmol) in THF (3.2 mL) was added sec-BuLi (1.4 M in cyclohexane, 2 mL, 2.8 mmol) at 0 C. The resulting deep-red solution was stirred for an additional 3 h at the same temperature. To this reaction mixture was added a solution of ZnBr2 (1.3 M in THF, 2.38 mL, 3.09 mmol) at 0 C and stirring was continued at r.t. for 1 h. To a degassed solution of [Pd2dba3]¡¤CHCl3 (266 mg, 0.257 mmol) and tris(2,4-di-tert-butylphenyl)-phosphite (666 mg, 1.029 mmol) in THF (5.5 mL) was added a degassed solution of sulfide (S)- 4 (890 mg, 2.05 mmol) in THF (3 mL). The resulting dark purple solution was stirred for an additional 10 min at r.t. and was subsequently added dropwise to the previously prepared organozinc compound. The reaction mixture was heated to reflux under argon at 75 C for 18 h, and then cooled to r.t., quenched with H2O and extracted with ethyl acetate (3 ¡Á 200 mL). The combined organic layers were washed with brine (3 ¡Á 200 mL) and dried over MgSO4. The mixture was filtered, the solvent was evaporated and the crude product was purified by column chromatography (silica, PE/EE/NEt3 = 20/10/1). The product (R,SFc,RFc)- 5 was obtained as an orange foam (yield: 687 mg, 59%). M.p.: 58-61 C. 1H NMR (400 MHz, CDCl3): delta 1.37 (d, J = 6.8 Hz, 3H, CH3CH), 1.61 (s, 6H, N(CH3)2), 2.20 (s, 3H, Ph-CH3), 3.65 (q, J = 6.8 Hz, 1H, CH3CH), 4.11 (dd, J1 = 2.4 Hz, J2 = 1.4 Hz, 1H, H3), 4.27 (s, 5H, Cp?), 4.30 (dd, J1 = J2 = 2.4 Hz, 1H, H4), 4.35 (s, 5H, Cp?), 4.37 (dd, J1 = J2 = 2.5 Hz, 1H, H4?) 4.44 (dd, J1 = 2.5 Hz, J2 = 1.5 Hz, 1H, H3? 4.59 (dd, J1 = 2.5 Hz, J2 = 1.5 Hz, 1H, H5? 4.64 (dd, J1 = 2.4 Hz, J2 = 1.4 Hz, 1H, H5), 6.88 (d, J = 8.1 Hz, 2H, Ph-meta), 7.02 (d, J = 8.1 Hz, 2H, Ph-ortho). 13C{1H} NMR (100.6 MHz, CDCl3): delta 14.7 (CH3CH), 20.9 (Ph-CH3), 40.3 (2C, N(CH3)2), 55.4 (CH3CH), 66.1 (C4), 66.7 (C3), 67.9 (C4? 69.6 (5C, Cp’), 70.7 (5C, Cp?), 71.7 (C5? 72.4 (C5), 74.1 (C3? 89.8 (C2), 128.9 (2C, Ph-ortho), 129.1 (2C, Ph-meta), 135.1 (2C, Ph-ipso + Ph-para); 3 Cq (C1, C1? C2? were not observed. HR-MS (EI): m/z [M?]+ calcd. 563.1032 for C31H33Fe2NS; found: 563.1050. [alpha]lambda20 (nm): -660 (589), -746 (578), -1180 (546) (c 0.224, CHCl3).

31886-58-5, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,31886-58-5 ,(R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, other downstream synthetic routes, hurry up and to see

Reference£º
Article; Gross, Manuela A.; Mereiter, Kurt; Wang, Yaping; Weissensteiner, Walter; Journal of Organometallic Chemistry; vol. 716; (2012); p. 32 – 38;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

The effect of the change of Tris[2-(dimethylamino)ethyl]amine synthetic route on the product

33527-91-2, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,33527-91-2 ,Tris[2-(dimethylamino)ethyl]amine, other downstream synthetic routes, hurry up and to see

One of the major reasons is to use measurements of the macroscopic properties of a system, such as the rate of change in the concentration of reactants or products with time, to discover the sequence of events that occur at the molecular level.33527-91-2, Tris[2-(dimethylamino)ethyl]amine, introduce a new downstream synthesis route. 33527-91-2

2.1 Preparation of [Co(Me6tren)Cl](ClO4) Analytical grade (Sigma-Aldrich) chemicals were used without further purification. The complex [Co(Me6tren)Cl](ClO4) has been prepared by the published recipe [32] : CoCl2¡¤6H2O (0.200 g, 0.84 mmol) was dissolved in EtOH (20 cm3) at 55 C. Me6tren (0.214 g, 0.92 mmol) dissolved in EtOH (10 cm3) was added dropwise with stirring, forming a blue solution that was stirred overnight at room temperature. NaClO4¡¤4H2O (0.118 g, 0.84 mmol) was added with stirring inducting precipitation of pale blue [Co(Me6tren)Cl](ClO4) (0.237 g, 67%) which was separated by filtration and dried on air. Anal. Calc. for C12H30CoN4O4Cl2: C, 34.11; H, 7.16; N, 13.27. Found: C, 34.36; H, 7.21; N, 13.28%.

33527-91-2, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,33527-91-2 ,Tris[2-(dimethylamino)ethyl]amine, other downstream synthetic routes, hurry up and to see

Reference£º
Article; Packova, Alena; Miklovi?, Jozef; Bo?a, Roman; Polyhedron; vol. 102; (2015); p. 88 – 93;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis