Simple exploration of 110-70-3

As the paragraph descriping shows that 110-70-3 is playing an increasingly important role.

110-70-3, N1,N2-Dimethylethane-1,2-diamine is a chiral-nitrogen-ligands compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

The ligand L1 was synthesized via previously reported procedure[23]. A solution of potassium carbonate (2.55 g, 18.45 mmol)in 10 mL water was dropwise added to the aqueous solution of 2-(chloromethyl)-pyridine hydrochloride (1.5 g, 9.15 mmol in10 mL). After about 30 min. of stirring at room temperature, thereaction mixture was extracted with dichloromethane(3 20 mL). The combined organic extracts were dried over anhydroussodium sulfate. The solution was filtered and the solvent wasremoved under vacuum. The resulted residue was then dissolvedin dichloromethane (10 mL). The dichloromethane solution of 2-chloromethyl-pyridine was added dropwise to a solution of N,N0-dimethylethylenediamine (0.471 mL, 5.34 mmol) in dichloromethane(15 mL). After this addition, 10 mL of aqueous sodiumhydroxide (1 M) was added slowly and the reaction mixture wasstirred for next 60 h at room temperature. After stirring was finished,another fraction of sodium hydroxide (10 mL, 1 M) wasadded rapidly. The reaction mixture was extracted with dichloromethane(3 25 mL) and combined organic portion was dried overanhydrous sodium sulfate. Evaporation of solvent led to isolationof the ligand L1 as a dark orange oil. (1.13 g, Yield 79%) 1H NMR(500 MHz, Methanol-d4) d 7.27 (m, 2H, pyridine ring), 7.50 (d,2H, pyridine ring), 7.76 (m, 2H, pyridine ring), 8.45 (d, 2H, pyridinering), 3.68 (s, 4H, -N-CH2-Py), 2.63 (s, 4H, -CH2-CH2-), 2.26 (s, 6H,N-CH3). IR (cm1): 2945, 2789, 1589, 1569, 1472, 1432, 1360,1304, 1146, 1090, 1031, 994, 635, 614, 418.

As the paragraph descriping shows that 110-70-3 is playing an increasingly important role.

Reference£º
Article; Singh, Nirupama; Niklas, Jens; Poluektov, Oleg; Van Heuvelen, Katherine M.; Mukherjee, Anusree; Inorganica Chimica Acta; vol. 455; (2017); p. 221 – 230;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Some tips on 33527-91-2

As the paragraph descriping shows that 33527-91-2 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.33527-91-2,Tris[2-(dimethylamino)ethyl]amine,as a common compound, the synthetic route is as follows.

To a solution of tris(2-dimethylaminoethyl)amine (0.426 g, 1.85mmol) in acetonitrile (4 mL) was added 1-bromodecane (1.27 g, 5.73 mmol). Theresulting mixture was heated at reflux with stirring for 18 hours. After cooling, and the addition of hexanes (5 mL), a white solid precipitated, which was filtered with a Buchner funnel, transferring with a cold hexanes/acetone mixture (15 mL, 1:1). The solid was rinsed with a cold hexanes/acetone mixture (2O mL, 1:1), resulting in T10 10,10,10 (1.16 g, 70%) as a white powder; mp=223-248 C; ?H NMR (300 MHz,CDC13) oe 4.11-4.02 (m, 6H), 3.62-3.53 (m, 6H), 3.41-3.27 (m, 24H), 1.72-1.62 (m, 6H), 1.38-1.14 (m, 42H), 0.85-0.78 (m, 9H); ?3C NMR (75 MHz, CD3OD) oe 65.4,61.1, 50.2, 46.9, 31.6, 29.2, 29.0, 28.9, 26.1, 22.4, 22.3, 13.0; high resolution mass spectrum (ESI) m/z 217.9095 ([Mj3 calculated for [C42H93N4j3: 217.9128). See alsoYoshimura et al., 2012, Langmuir 28:9322-9331. ?H and ?3C NMR spectra of compound T-10,10,10 can be found in Figure 50.

As the paragraph descriping shows that 33527-91-2 is playing an increasingly important role.

Reference£º
Patent; TEMPLE UNIVERSITY-OF THE COMMONWEALTH SYSTEM OF HIGHER EDUCATION; VILLANOVA UNIVERSITY; WUEST, William, M.; MINBIOLE, Kevin, P.C.; BARBAY, Deanna, L.; (227 pag.)WO2016/172436; (2016); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Downstream synthetic route of 110-70-3

The synthetic route of 110-70-3 has been constantly updated, and we look forward to future research findings.

110-70-3, N1,N2-Dimethylethane-1,2-diamine is a chiral-nitrogen-ligands compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

To a solution of N,N’-dimethylethane-l,2-diamine (40.4 g) in DCM (300 mL) was added a solution of Boc20 (10 g, 10.6 mL, 45.8 mmol) in DCM (100 mL) dropwise at 0 C over 1 hr. The reaction mixture was stirred at room temperature for 18 hrs. The organic layer was washed with saturated aqueous NaHC03 (50 mL), brine (50 mL), dried over Na2S04 and concentrated in vacuo. The residue was purified by column chromatography to afford ie/t-butyl N-methyl-N-[2- (methylamino)ethyl]carbamate (6.8 g, Compound BC-1) as a yellow oil. 1H NMR (400MHz, CDC13) delta ppm: 3.34 (br. s., 2H), 2.89 (s, 3H), 2.74 (t, / = 6.7 Hz, 2H), 2.46 (s, 3H), 1.47 (s, 9H).

The synthetic route of 110-70-3 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; F. HOFFMANN-LA ROCHE AG; HOFFMANN-LA ROCHE INC.; GAO, Lu; LIANG, Chungen; YUN, Hongying; ZHENG, Xiufang; WANG, Jianping; MIAO, Kun; ZHANG, Bo; (157 pag.)WO2018/41763; (2018); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

New learning discoveries about 110-70-3

The synthetic route of 110-70-3 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.110-70-3,N1,N2-Dimethylethane-1,2-diamine,as a common compound, the synthetic route is as follows.

1,4-Dimethyl-3-(4-nitrophenyl)piperazin-2-one (3); A 100-mL single-neck round-bottomed flask equipped with a magnetic stirrer was purged with nitrogen, charged with N1,N2-dimethylethane-1,2-diamine (1.61 g, 18.2 mmol), ethanol (5 mL) and 2 (500 mg, 1.82 mmol), and the reaction was stirred at room temperature for 1 h. After this time, the reaction mixture was evaporated under reduced pressure, and the resulting residue was purified by flash column chromatography to afford an 89% yield (404 mg) of 3 as a yellow oil: 1H NMR (500 MHz, DMSO-d6) delta 8.18 (d, 2H, J=8.5 Hz), 7.60 (d, 2H, J=8.5 Hz), 3.87 (s, 1H), 3.61 (td, 1H, J=12.0, 4.0 Hz), 3.26 (ddd, 1H, J=12.0, 4.0, 2.5 Hz), 3.02 (ddd, 1H, J=12.0, 4.0, 2.5 Hz), 2.84 (s, 3H), 2.64 (td, 1H, J=12.0, 4.0 Hz), 2.06 (s, 3H).

The synthetic route of 110-70-3 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; Zhao, Zhongdong; Zhichkin, Pavel E.; Stafford, Douglas G.; Kropf, Jeffrey E.; BLOMGREN, Peter A.; Currie, Kevin S.; Lee, Seung H.; Mitchell, Scott A.; Xu, Jianjun; Schmitt, Aaron C.; US2009/82330; (2009); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Simple exploration of 110-70-3

As the paragraph descriping shows that 110-70-3 is playing an increasingly important role.

110-70-3, N1,N2-Dimethylethane-1,2-diamine is a chiral-nitrogen-ligands compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

A single-neck RBFequipped with a magnetic stirrer was charged with methyl2-bromo-2-(4-nitrophenyl)acetate (3,7.33 g, 26.74 mmol) and EtOH (80 mL). After cooling to 0 C in an ice/waterbath. N,N?-dimethylethane-1,2-diamine (23 g, 0.26 mol) was added to the solution over 5 min. Theresulting solution was stirred at 0 C to 25 C overnight. After evaporation invacuo, the crude mixturewas purified on a silica gel column (MeOH: DCM = 10: 90) to afford compound 4 as a yellow solid (6.70 g, 100%).

As the paragraph descriping shows that 110-70-3 is playing an increasingly important role.

Reference£º
Article; Young, Wendy B.; Barbosa, James; Blomgren, Peter; Bremer, Meire C.; Crawford, James J.; Dambach, Donna; Gallion, Steve; Hymowitz, Sarah G.; Kropf, Jeffrey E.; Lee, Seung H.; Liu, Lichuan; Lubach, Joseph W.; Macaluso, Jen; Maciejewski, Pat; Maurer, Brigitte; Mitchell, Scott A.; Ortwine, Daniel F.; Di Paolo, Julie; Reif, Karin; Scheerens, Heleen; Schmitt, Aaron; Sowell, C. Gregory; Wang, Xiaojing; Wong, Harvey; Xiong, Jin-Ming; Xu, Jianjun; Zhao, Zhongdong; Currie, Kevin S.; Bioorganic and Medicinal Chemistry Letters; vol. 25; 6; (2015); p. 1333 – 1337;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Simple exploration of 33527-91-2

As the paragraph descriping shows that 33527-91-2 is playing an increasingly important role.

33527-91-2, Tris[2-(dimethylamino)ethyl]amine is a chiral-nitrogen-ligands compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

General procedure: The copper complex Cu5-1 was dissolved in water, and an excessive amount of an aqueous solution of saturated sodium tetrafluoroborate (manufactured by Wako Pure Chemical Industries, Ltd.) was added while stirring. A precipitated solid was collected by filtering and a copper complex Cu5-72 was obtained.

As the paragraph descriping shows that 33527-91-2 is playing an increasingly important role.

Reference£º
Patent; FUJIFILM Corporation; Sasaki, Kouitsu; Kawashima, Takashi; Hitomi, Seiichi; Shiraishi, Yasuharu; US10215898; (2019); B2;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Brief introduction of 110-70-3

110-70-3 N1,N2-Dimethylethane-1,2-diamine 8070, achiral-nitrogen-ligands compound, is more and more widely used in various.

110-70-3, N1,N2-Dimethylethane-1,2-diamine is a chiral-nitrogen-ligands compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

To a stirred solution of Lambda/,Lambda/’-dimethylethylene diamine (3.66 mL, 34 mmol) in dichloromethane (40 mL) at 0C was added dropwise a solution of di-tert-butyl dicarbonate (2.4 g, 11 mmol) in dichloromethane (20 mL) and allowed to warm to room temperature overnight, concentrated under reduced pressure, diluted with EtOAc (100 mL), washed with water (2 * 100 mL), brine (100 mL), dried and concentrated under reduced pressure to give the title product 91 as a colourless oil (1.54 g, 74% yield). 1H NMR (400 MHz, CDCI3) delta 3.26 (t, J = 6.15 Hz, 2H), 2.81 (s, 3H), 2.66 (t, J = 6.57 Hz, 2H), 2.38 (s, 3H), 9.28 (s, 9H) ppm.

110-70-3 N1,N2-Dimethylethane-1,2-diamine 8070, achiral-nitrogen-ligands compound, is more and more widely used in various.

Reference£º
Patent; ANTIKOR BIOPHARMA LIMITED; DEONARAIN, Mahendra Persaud; YAHIOGLU, Gokhan; STAMATI, Ioanna; SAOUROS, Savvas; KAPADNIS, Prashant Bhimrao; (423 pag.)WO2016/46574; (2016); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Analyzing the synthesis route of 110-70-3

110-70-3 N1,N2-Dimethylethane-1,2-diamine 8070, achiral-nitrogen-ligands compound, is more and more widely used in various.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.110-70-3,N1,N2-Dimethylethane-1,2-diamine,as a common compound, the synthetic route is as follows.

beta-CD-OTs (500.0 mg, 0.388 mmol) was dissolved in 5 mL dry DMF with 100 mg NaI. N,N?-Dimethylethane-1,2-diamine (1.28 mL, 11.72 mmol) was then added under N2 and the reaction mixture was stirred overnight at 70 C. under N2. The next day the reaction mixture was cooled and precipitated in 50 mL acetone, giving a white precipitate. Unreacted tosylate was removed via the same ion-exchange methods as described above for beta-CD-NH2. Yield=374 mg (80.0%). 1H NMR (300 MHz, D2O, delta): 5.02-4.87 (s, 7H, C1H of CD), 3.93-3.64 (m, 29H, C2H, C3H, C4H, and C5H of CD and NH), 3.61-3.29 (m, 14H, C6H of CD), 3.01-2.36 (m, 10H, N1-CH2, N2-CH2, and N2-(CH3)2).

110-70-3 N1,N2-Dimethylethane-1,2-diamine 8070, achiral-nitrogen-ligands compound, is more and more widely used in various.

Reference£º
Patent; Thompson, David H.; Kulkarni, Aditya; Deng, Wei; US2015/202323; (2015); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Simple exploration of 110-70-3

As the paragraph descriping shows that 110-70-3 is playing an increasingly important role.

110-70-3, N1,N2-Dimethylethane-1,2-diamine is a chiral-nitrogen-ligands compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

General procedure: CD-1 to CD-9 were synthesized according to the procedure reported in Ref. [18]; a representative synthesis is shown in Scheme 2. Nucleophilic substitution of mono(6-O-p- tolylsulfonyl)-beta-CD (6.4459 g, 5 mmol) with the corresponding amine (25 mmol) was performed by reaction in anhydrous dimethylformamide (DMF) at 80 C in a nitrogen atmospherefor 24.0 h, followed by cooling to room temperature. (S)-Prolinamide and (R)-prolinamide were reduced with LiAlH4 to (S)-2-aminomethylpyrrolidine and (R)-2- aminomethylpyrrolidine.

As the paragraph descriping shows that 110-70-3 is playing an increasingly important role.

Reference£º
Article; Zhu, Qingying; Shen, Haimin; Yang, Zhujin; Ji, Hongbing; Cuihua Xuebao/Chinese Journal of Catalysis; vol. 37; 8; (2016); p. 1227 – 1234;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Some tips on 33527-91-2

As the paragraph descriping shows that 33527-91-2 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.33527-91-2,Tris[2-(dimethylamino)ethyl]amine,as a common compound, the synthetic route is as follows.

Cu(CH3COO)2H2O (52 mg, 0,26 mmol) was dissolved in the smallest possible amount of acetone and treated with an excess of Me6TREN. The mixture was left under vigorous stirring for a couple of hours. During this time, the solution turned from blue to green. After evaporation of the solvents, the green product was redisolved in acetone and an excess of KPF6 (dissolved in acetoneas well) was added. The white solid CH3COOK formed on the bottom of the flask and it was filtered off. The light blue solution was dried under vacuum and the solid dissolved in dichloromethanein order to eliminate the excess of KPF6. After filtration of the solid residue, the solution was reduced in volume and the pure product 4 precipitated upon addition of diethylether. Crystals suitable for XRD were grown at low temperature by slow diffusion of diethyl ether into a dichloromethane solution of 4. Yield: 27%; Anal. Calc. for [Cu(L1)(CH3COO)](PF6)2H2O: C, 31.46; H, 6.93; N, 10.49. Found: C, 30.89; H,6.89; N, 10.39%.

As the paragraph descriping shows that 33527-91-2 is playing an increasingly important role.

Reference£º
Article; Tordin, Elisa; List, Manuela; Monkowius, Uwe; Schindler, Siegfried; Knoer, Guenther; Inorganica Chimica Acta; vol. 402; (2013); p. 90 – 96;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis