Share a compound : 33527-91-2

With the rapid development of chemical substances, we look forward to future research findings about Tris[2-(dimethylamino)ethyl]amine

Tris[2-(dimethylamino)ethyl]amine, cas is 33527-91-2, it is a common heterocyclic compound, the chiral-nitrogen-ligands compound, its synthesis route is as follows.,33527-91-2

General procedure: The copper complex Cu5-1 was dissolved in water, and an excessive amount of an aqueous solution of saturated sodium tetrafluoroborate (manufactured by Wako Pure Chemical Industries, Ltd.) was added while stirring. A precipitated solid was collected by filtering and a copper complex Cu5-72 was obtained.

With the rapid development of chemical substances, we look forward to future research findings about Tris[2-(dimethylamino)ethyl]amine

Reference£º
Patent; FUJIFILM Corporation; Sasaki, Kouitsu; Kawashima, Takashi; Hitomi, Seiichi; Shiraishi, Yasuharu; US10215898; (2019); B2;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

New learning discoveries about 31886-58-5

The synthetic route of 31886-58-5 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.31886-58-5,(R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine,as a common compound, the synthetic route is as follows.,31886-58-5

EXAMPLE A2; Preparation of (RC,SFc,SP)-1-[2-(1-dimethylaminoethyl)ferrocen-1-yl]cyclo-hexylphosphino-1′-bromoferrocene of the formula (A2) [Cy=cyclohexyl; Me=methyl]; a) Preparation of the Monochlorophosphine X4; 1.3 M s-BuLi solution in cyclohexane (7.7 ml, 10 mmol) is added to a solution of (R)-N,N-dimethyl-1-ferrocenylethylamine[(R)-Ugi amine] (2.57 g, 10 mmol) in TBME (15 ml) over a period of 10 minutes and at a temperature below -20 C. After the addition is complete, the reaction mixture is warmed to 0 C. and stirred at this temperature for 1.5 hours. Dichlorocyclohexylphosphine (1.51 ml, 10 mmol) is then added at a temperature below -60 C. over a period of 10 minutes. The mixture is then stirred at -78 C. for another 30 minutes, the cooling bath is removed, the reaction mixture is stirred for a further one hour. This gives the monochlorophosphine X4.; EXAMPLE 1; Preparation of [(RC,RC,)(SFc,SFc,)(SP,SP)-1-[2-(1-dimethylaminoethyl)ferrocenyl]phenylphosphino-1′-[2-(1-dimethylaminoethyl)ferrocenyl]cyclohexylphosphinoferrocene of the formula (B1) [R=phenyl; Me=methyl, R’=cyclohexyl]; Reaction mixture a) 1.3 M s-BuLi solution in cyclohexane (3.85 ml, 5 mmol) is added to a solution of (R)-N,N-dimethyl-1-ferrocenylethylamine[(R)-Ugi amine] (1.28 g, 5 mmol) in TBME (10 ml) over a period of 10 minutes and at a temperature below -20 C. After the addition is complete, the reaction mixture is warmed to 0 C. and stirred at this temperature for another 1.5 hours. Dichlorocyclohexylphosphine (0.76 ml, 5 mmol) is then added at a temperature below -60 C. over a period of 10 minutes. The reaction mixture is then stirred at -78 C. for another 30 minutes, the cooling bath is removed and the reaction mixture is stirred for a further one hour to give the monochlorophosphine X7.; EXAMPLE 3; Preparation of [(RC,RC,)(SFc,SFc,)(SP,SP)-1-[2-(1-dimethylaminoethyl)-ferrocenyl]phenylphosphino-1′-[2-(1-dimethylaminoethyl)ferrocenyl]cyclohexyl-phosphinoferrocene of the formula (B1) [R=phenyl; Me=methyl, R’=cyclohexyl]; a) 1.3 M s-BuLi solution in cyclohexane (3.85 ml, 5 mmol) is added to a solution of (R)-N,N-dimethyl-1-ferrocenylethylamine[(R)-Ugi amine] (1.28 g, 5 mmol) in TBME (10 ml) over a period of 10 minutes and at a temperature below -20 C. After the addition is complete, the reaction mixture is warmed to 0 C. and stirred at this temperature for another 1.5 hours. This gives the lithiated Ugi amine X9.; EXAMPLE 4; Preparation of [(RC,RC,)(SFc,SFc,)(SP,SP)-1-[2-[(1-dimethylaminoethyl)-ferrocenyl]phenylphosphino-1′-[2-(1-dimethylaminoethyl)ferrocenyl]isopropyl-phosphinoferrocene of the formula (B2) [R=phenyl; Me=methyl, R’=isopropyl]; a) 1.3 M s-BuLi solution in cyclohexane (3.08 ml, 4 mmol) is added to a solution of (R)-N,N-dimethyl-1-ferrocenylethylamine[(R)-Ugi amine] (1.03 g, 4 mmol) in TBME (10 ml) over a period of 10 minutes and at a temperature below -20 C. After the addition is complete, the reaction mixture is warmed to 0 C. and stirred at this temperature for another 1.5 hours. This gives the lithiated Ugi amine X9.; b) In a vessel, 7.7 ml (10 mmol) of s-BuLi (1.3 M in cyclohexane) are added to a solution of (R)-N,N-dimethyl-1-ferrocenylethylamine[(R)-Ugi amine] (2.57 g, 10 mmol) in TBME (15 ml) at a temperature below -20 C. over a period of 10 minutes. After the addition is complete, the reaction mixture is warmed to 0 C. and stirred at this temperature for another 1.5 hours. Dichloroisopropylphosphine (1.23 ml, 10 mmol) is then added at a temperature below -60 C. over a period of 10 minutes. The mixture is then stirred at -78 C. for another 30 minutes, the cooling bath is removed and the reaction mixture is stirred for a further one hour. This gives the monochlorophosphine X8.; EXAMPLE ; Preparation of [(RC,RC),(SFc,SFc),(SP,SP)]-1-[2-(1-N,N-dimethylamino-ethyl)-1-ferrocenyl](4-methoxyphenyl)phosphino-1′-[2-(1-N,N-dimethylaminoethyl)-1-ferrocenyl]cyclohexylphosphinoferrocene of the formula (B6); Reaction mixture a): 7.7 ml (10 mmol) of s-BuLi (1.3 M in cyclohexane) are added dropwise to a cooled solution of 2.57 g (10 mmol) of (R)-N,N-dimethyl-1-ferrocenyl-ethylamine [(R)-Ugi amine] in TBME (15 ml) at such a rate that the temperature remains below -20 C. After the addition, the temperature is allowed to rise to 0 C. and the mixture is stirred at this temperature for another 1.5 hours. The mixture is then cooled to -78 C. and 1.52 ml (10 mmol) of cyclohexyldichlorophosphine are added dropwise at such a rate that the temperature does not exceed -60 C. The mixture is stirred at -78 C. for a further 30 minutes, the cooling is then removed and the suspension containing the monochlorophosphine (RC,SFc)-[2-(1-N,N-dimethylamino-ethyl)-1-ferrocenyl]cyclohexylchlorophosphine is stirred for a further 1 hour.; Reaction mixture d): 7.7 ml (10 mmol) of s-BuLi (1.3 M in cyclohexane) are added dropwise to a cooled solution of (R)-N,N-dimethyl-1-ferrocenylethylamine[(R)-Ugi amine] (2.57 g, 10 mmol) in TBME (15 ml) at such a rate th…

The synthetic route of 31886-58-5 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; Chen, Weiping; Spindler, Felix; Nettekoven, Ulrike; Pugin, Benoit; US2010/160660; (2010); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Share a compound : 31886-58-5

With the rapid development of chemical substances, we look forward to future research findings about (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine

(R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, cas is 31886-58-5, it is a common heterocyclic compound, the chiral-nitrogen-ligands compound, its synthesis route is as follows.,31886-58-5

The compound having the structure shown in formula (VI) of FIG. 4 was made using the scheme set forth in FIG. 2. Referring to FIG. 2, alpha-Dimethylaminoethylferrocene (as Compound 1) (0.52 g, 2.03 mmol) was dissolved in diethyl ether (8.3 ml). Next, sec-butyl lithium (2.0 ml, 1.4 M solution, 1.36 eq) was added and the mixture was stirred at room temperature overnight. Chlorobis[3,5-bis(trifluoromethyl)phenyl]phosphine (1.0 g, 2.03 mmol, 1.0 eq) in diethyl ether (1.7 ml) was added dropwise and the solution was refluxed for 5 hours. An aqueous solution saturated with sodium bicarbonate (15 ml) was added. The layers were separated and the aqueous layer washed with diethyl ether (2¡Á6 ml). The separated organic layer was combined with the diethyl ether washings and dried over magnesium sulfate. The solution was concentrated under vacuum and purified by column chromatography on alumina using 30:1 hexane:ethyl acetate as eluent. This resulted in an orange oil containing Compound 2 (0.60 g, 0.84 mmol, 41%).

With the rapid development of chemical substances, we look forward to future research findings about (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine

Reference£º
Patent; Eastman Chemical Company; How, Rebecca; Clarke, Matt; Hembre, Robert Thomas; Ponasik, James A.; Tolleson, Ginette S.; (17 pag.)US9308527; (2016); B2;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Share a compound : 33527-91-2

As the rapid development of chemical substances, we look forward to future research findings about 33527-91-2

Tris[2-(dimethylamino)ethyl]amine, cas is 33527-91-2, it is a common heterocyclic compound, the chiral-nitrogen-ligands compound, its synthesis route is as follows.,33527-91-2

To a solution of tris(2-dimethylaminoethyl)amine (0.326 g, 1.41 mmol) in acetonitrile (4 mL) was added 1-bromooctadecane (1.41g, 4.23 mmol). The resulting mixture was heated at reflux with stirring for 23 hours, during which time a white solid was observed. After cooling, and the addition of a cold hexanes/acetonemixture (15 mL, 1:1), to the reaction flask, the precipitate was filtered with a Buchner funnel, and rinsed with a cold hexanes/acetone mixture (20 mL, 1:1), resulting in T-18,18,18 (1.48 g, 85%) as a white powder; mp=227-259 C; ?H NMR (300 JVII-Tz, CDC13) oe 4.13-4.02 (m, 6H), 3.65-3.58 (m, 6H), 3.46-3.38 (m, 6H), 3.35 (s, 18H), 1.78-1.66 (m, 6H), 1.41-1.37 (m, 90H), 0.89-0.82 (m, 9H); high resolutionmass spectrum (ESI) in/z 330.0376 ([Mj3 calculated for [C66H,4,N4j3: 330.0380). ?H spectmm of compound T-18,18,18 can be found in Figure 55.

As the rapid development of chemical substances, we look forward to future research findings about 33527-91-2

Reference£º
Patent; TEMPLE UNIVERSITY-OF THE COMMONWEALTH SYSTEM OF HIGHER EDUCATION; VILLANOVA UNIVERSITY; WUEST, William, M.; MINBIOLE, Kevin, P.C.; BARBAY, Deanna, L.; (227 pag.)WO2016/172436; (2016); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Share a compound : 31886-58-5

As the rapid development of chemical substances, we look forward to future research findings about 31886-58-5

(R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, cas is 31886-58-5, it is a common heterocyclic compound, the chiral-nitrogen-ligands compound, its synthesis route is as follows.,31886-58-5

(S)-Ugi-amine 1 (5.14g, 20mmol) was dissolved in 50mL of diethyl ether. Under nitrogen and ice salt bath cooling, n-butyl lithium (16mL, 2.5mol / L) was added dropwise to the reaction system, After the completion, the temperature was slowly raised to room temperature, and the reaction was stirred for 3 hours. Chlorodiphenylphosphine (8.82 g, 40 mmol) was added dropwise under ice-cooling, and the mixture was slowly warmed to room temperature and stirred for 12 hours. The reaction was quenched with saturated sodium bicarbonate solution. Extracted with dichloromethane, dried over anhydrous sodium sulfate, concentration, column chromatography to obtain compound 2 (5.38g, 61%).

As the rapid development of chemical substances, we look forward to future research findings about 31886-58-5

Reference£º
Patent; Zhejiang University of Technology; Zhong Weihui; Ling Fei; Nian Sanfei; (14 pag.)CN108774271; (2018); A;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Extracurricular laboratory: Synthetic route of 33527-91-2

As the rapid development of chemical substances, we look forward to future research findings about 33527-91-2

Tris[2-(dimethylamino)ethyl]amine, cas is 33527-91-2, it is a common heterocyclic compound, the chiral-nitrogen-ligands compound, its synthesis route is as follows.,33527-91-2

LiBH4 (22 mg, 1 mmol) and Me6TREN (0.52 mL, 2 mmol) wereadded to 5 mL of THF. This was heated to reflux for 1 h at whichpoint the heat and stirrer were turned off. Slow cooling of the solutionyielded X-ray quality colorless crystals (40 mg, 16%).1H NMR (400.1 MHz, C6D6, 300 K): delta 2.11 (s, 18H, Me6TREN Me),1.94, 1.90 (overlapping br s, 12H, Me6TREN CH2), 0.59 ppm(quartet/septet, 4H, BH4, 1J10BH = 27.5 Hz, 1J11BH = 81.5 Hz).13C NMR (100.6 MHz, C6D6, 300 K): delta 57.0 (CH2), 51.2 (CH2),45.7 ppm (Me).7Li NMR (155.5 MHz, C6D6, 300 K): delta 0.29 ppm.11B NMR (128.3 MHz, C6D6, 300 K): delta 39.5 ppm (quin,1JBH = 81.2 Hz).Elemental analysis for C12H34N4LiB: Calc.: C, 57.15; H, 13.59; N,22.22. Found: C, 57.16; H, 13.48; N, 22.59%.

As the rapid development of chemical substances, we look forward to future research findings about 33527-91-2

Reference£º
Article; Kennedy, Alan R.; McLellan, Ross; McNeil, Greg J.; Mulvey, Robert E.; Robertson, Stuart D.; Polyhedron; vol. 103; (2016); p. 94 – 99;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Extracurricular laboratory: Synthetic route of 110-70-3

As the rapid development of chemical substances, we look forward to future research findings about 110-70-3

N1,N2-Dimethylethane-1,2-diamine, cas is 110-70-3, it is a common heterocyclic compound, the chiral-nitrogen-ligands compound, its synthesis route is as follows.,110-70-3

To an ice-cooled solution of N,N’-dimethyethylenediamine (10 mL, 91.0 mmol) in dry THF (150 mL) was added a solution of Boc2O (4.97 g, 22.8 mmol) in dry THF (50 mL) over 30 minutes. The reaction mixture was stirred for 1 h at 0 C. then at rt overnight, and concentrated in vacuo. The resulting residue was taken up in a mixture of EA and a sat. NH4Cl solution. The organic layer was separated, washed with brine, dried (MgSO4), filtered and concentrated under reduced pressure. FC (10% MeOH in DCM) afforded the title compound as a yellow oil (2.90 g, 17%).LC-MS (analytic A, Zorbax SB-AQ column, acidic conditions): tR=0.50 min; [M+H]+=189.40.

As the rapid development of chemical substances, we look forward to future research findings about 110-70-3

Reference£º
Patent; Aissaoui, Hamed; Boss, Christoph; Corminboeuf, Olivier; Frantz, Marie-Celine; Grisostomi, Corinna; US2011/224210; (2011); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Extracurricular laboratory: Synthetic route of 110-70-3

As the rapid development of chemical substances, we look forward to future research findings about 110-70-3

N1,N2-Dimethylethane-1,2-diamine, cas is 110-70-3, it is a common heterocyclic compound, the chiral-nitrogen-ligands compound, its synthesis route is as follows.,110-70-3

The compound N,N’-dimethylethylenediamine (20 g, 0.226 mol)Soluble in 100mL of dichloromethane,50 mL of Boc anhydride (14.8 g, 0.068 mol) was added dropwise in an ice water bath.Dichloromethane mixture,Drop the room temperature reaction,The progress of the reaction was monitored by TLC (DCM: MeOH = 10:1). filter,The dry filtrate was concentrated under reduced pressure at 40 C.After the column, the product was 9g.

As the rapid development of chemical substances, we look forward to future research findings about 110-70-3

Reference£º
Patent; Sichuan Bai Li Pharmaceutical Co., Ltd.; Zhu Yi; Li Jie; Wan Weili; Zhuo Shi; Li Gangrui; (28 pag.)CN109106951; (2019); A;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Brief introduction of 33527-91-2

33527-91-2 Tris[2-(dimethylamino)ethyl]amine 263094, achiral-nitrogen-ligands compound, is more and more widely used in various.

33527-91-2, Tris[2-(dimethylamino)ethyl]amine is a chiral-nitrogen-ligands compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated,33527-91-2

To a solution of tris(2-dimethylaminoethyl)amine (0.436 g, 1.89 mmol) in acetonitrile (4 mL) was added 1-bromooctane (1.20 g, 6.22 mmol). The resulting mixture was heated at reflux with stirring for 18 hours, during which time a white solid was observed. After cooling, and the addition of a cold hexanes/acetone mixture (15 mL, 1:1), to the reaction flask, the precipitate was filtered with aBuchner funnel, and rinsed with a cold hexanes/acetone mixture (20 mL, 1:1), resulting in T-8,8,8 (1.45 g, 95%) as a yellow-white wax; ?H NMR (300 MI-Tz, CDC13) oe 4.02-3.94 (m, 6H), 3.63-3.54 (m, 6H), 3.42-3.30 (m, 24H), 1.79-1.67 (m, 6H), 1.41-1.19 (m, 30H), 0.90-0.83 (m, 9H); ?3C NMR (75 MHz, CD3OD) oe 65.3,61.0, 50.1, 46.8, 31.5, 28.9, 26.1, 22.4, 22.3, 13.1; high resolution mass spectrum(ESI) m/z 189.8823 ([Mj3 calculated for [C36H8,N4j3: 189.8815). See also Yoshimura et al., 2012, Langmuir 28:9322-933 1. ?H and ?3C NMR spectra of compound T-8,8,8 can be found in Figure 49.

33527-91-2 Tris[2-(dimethylamino)ethyl]amine 263094, achiral-nitrogen-ligands compound, is more and more widely used in various.

Reference£º
Patent; TEMPLE UNIVERSITY-OF THE COMMONWEALTH SYSTEM OF HIGHER EDUCATION; VILLANOVA UNIVERSITY; WUEST, William, M.; MINBIOLE, Kevin, P.C.; BARBAY, Deanna, L.; (227 pag.)WO2016/172436; (2016); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

New learning discoveries about 33527-91-2

The synthetic route of 33527-91-2 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.33527-91-2,Tris[2-(dimethylamino)ethyl]amine,as a common compound, the synthetic route is as follows.,33527-91-2

General procedure: The copper complex Cu5-1 was dissolved in water, and an excessive amount of an aqueous solution of saturated sodium tetrafluoroborate (manufactured by Wako Pure Chemical Industries, Ltd.) was added while stirring. A precipitated solid was collected by filtering and a copper complex Cu5-72 was obtained.

The synthetic route of 33527-91-2 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; FUJIFILM Corporation; Sasaki, Kouitsu; Kawashima, Takashi; Hitomi, Seiichi; Shiraishi, Yasuharu; US10215898; (2019); B2;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis