Some tips on 110-70-3

With the complex challenges of chemical substances, we look forward to future research findings about 110-70-3,belong chiral-nitrogen-ligands compound

As a common heterocyclic compound, it belongs to chiral-nitrogen-ligands compound, name is N1,N2-Dimethylethane-1,2-diamine, and cas is 110-70-3, its synthesis route is as follows.,110-70-3

To a solution of N,N’-dimethylethane-l,2-diamine (40.4 g) in DCM (300 mL) was added a solution of Boc20 (10 g, 10.6 mL, 45.8 mmol) in DCM (100 mL) dropwise at 0 C over 1 hr. The reaction mixture was stirred at room temperature for 18 hrs. The organic layer was washed with saturated aqueous NaHC03 (50 mL), brine (50 mL), dried over Na2S04 and concentrated in vacuo. The residue was purified by column chromatography to afford ie/t-butyl N-methyl-N-[2- (methylamino)ethyl]carbamate (6.8 g, Compound BC-1) as a yellow oil. 1H NMR (400MHz, CDC13) delta ppm: 3.34 (br. s., 2H), 2.89 (s, 3H), 2.74 (t, / = 6.7 Hz, 2H), 2.46 (s, 3H), 1.47 (s, 9H).

With the complex challenges of chemical substances, we look forward to future research findings about 110-70-3,belong chiral-nitrogen-ligands compound

Reference£º
Patent; F. HOFFMANN-LA ROCHE AG; HOFFMANN-LA ROCHE INC.; GAO, Lu; LIANG, Chungen; YUN, Hongying; ZHENG, Xiufang; WANG, Jianping; MIAO, Kun; ZHANG, Bo; (157 pag.)WO2018/41763; (2018); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Some tips on 33527-91-2

With the complex challenges of chemical substances, we look forward to future research findings about Tris[2-(dimethylamino)ethyl]amine

As a common heterocyclic compound, it belongs to chiral-nitrogen-ligands compound, name is Tris[2-(dimethylamino)ethyl]amine, and cas is 33527-91-2, its synthesis route is as follows.,33527-91-2

General procedure: LiBH4 (22 mg, 1 mmol) and Me6TREN (0.52 mL, 2 mmol) wereadded to 5 mL of THF. This was heated to reflux for 1 h at whichpoint the heat and stirrer were turned off. Slow cooling of the solutionyielded X-ray quality colorless crystals

With the complex challenges of chemical substances, we look forward to future research findings about Tris[2-(dimethylamino)ethyl]amine

Reference£º
Article; Kennedy, Alan R.; McLellan, Ross; McNeil, Greg J.; Mulvey, Robert E.; Robertson, Stuart D.; Polyhedron; vol. 103; (2016); p. 94 – 99;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Some tips on 110-70-3

With the complex challenges of chemical substances, we look forward to future research findings about N1,N2-Dimethylethane-1,2-diamine

It is a common heterocyclic compound, the chiral-nitrogen-ligands compound, N1,N2-Dimethylethane-1,2-diamine, cas is 110-70-3 its synthesis route is as follows.,110-70-3

a 1,3-Dimethyl-2-(2-thienyl)-imidazolidine 23.5 g (267 mmol) of N,N’-dimethylethylenediamine were dissolved in 300 ml of toluene and treated with 29.8 g (266 mmol) of thiophene-2-carbaldehyde. The clear mixture was refluxed for 4 hours using a Dean-Stark trap. After that time 4.9 ml of water had separated in the trap. After cooling, the solution was filtered and evaporated. The oily residue was destined in vacuo. Yield: 45 g. Boiling point: 65 C. (0.1 mm Hg).

With the complex challenges of chemical substances, we look forward to future research findings about N1,N2-Dimethylethane-1,2-diamine

Reference£º
Patent; Aventis Pharma Deutschland GmbH; Genentech, Inc.; US6566366; (2003); B1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

The important role of 110-70-3

With the complex challenges of chemical substances, we look forward to future research findings about N1,N2-Dimethylethane-1,2-diamine

Name is N1,N2-Dimethylethane-1,2-diamine, as a common heterocyclic compound, it belongs to chiral-nitrogen-ligands compound, and cas is 110-70-3, its synthesis route is as follows.,110-70-3

Add in a 100mL single-mouth bottleN1,N2-dimethylethyl-1,2-diamine (4g, 45mmol), cooled to about 0 C in an ice bath,Then (Boc) 2O (5 g, 23 mmol) in DCM (20 mL)The temperature was raised to 25 C and the reaction was stirred for 4 h.Concentrated under reduced pressure, a saturated sodium carbonate solution was added to the residue, and extracted three times with ethyl acetate (30 mL¡Á3).The organic phase was combined, washed three times with saturated brine (20 mL¡Á3) and dried over anhydrous sodiumThe mixture was suction filtered under reduced pressure, and the filtrate was evaporated.The crude product was purified by column chromatography eluting with EtOAc EtOAcConcentration under reduced pressure gave 2.1 g of a yellow oil.

With the complex challenges of chemical substances, we look forward to future research findings about N1,N2-Dimethylethane-1,2-diamine

Reference£º
Patent; Beijing Purunao Bio-technology Co., Ltd.; Zhang Peilong; Shi Hepeng; Lan Wenli; Song Zhitao; (250 pag.)CN108707139; (2018); A;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

The important role of 31886-58-5

With the complex challenges of chemical substances, we look forward to future research findings about (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine

Name is (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, as a common heterocyclic compound, it belongs to chiral-nitrogen-ligands compound, and cas is 31886-58-5, its synthesis route is as follows.,31886-58-5

15.4 ml of a cyclohexane solution of s-butyllithium (1.3 M, 22 mmol) are added to a solution of 5.14 g (20 mmol) of (R)-N, N-dimethyl-1 -ferrocenylethylamine [(R)-ugi- amine] in 30 ml of t-butyl methyl ether (TBME) at <20C over a period of 10 minutes. The mixture is then heated to 00C while stirring and maintained at this temperature for 1.5 hours. It is then cooled to <60C and 2.47 ml (20 mmol) of dichlororopropyl- phosphine are added over a period of 10 mintues. After stirring at -78C for30 minutes, the mixture is allowed to warm slowly to room temperature and is stirred at this temperature for 1.5 hours. With the complex challenges of chemical substances, we look forward to future research findings about (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine Reference£º
Patent; SOLVIAS AG; WO2008/55942; (2008); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Analyzing the synthesis route of 33527-91-2

33527-91-2 Tris[2-(dimethylamino)ethyl]amine 263094, achiral-nitrogen-ligands compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.33527-91-2,Tris[2-(dimethylamino)ethyl]amine,as a common compound, the synthetic route is as follows.,33527-91-2

Ni(CH3COO)2 (53 mg, 0,30 mmol) was dissolved in the smallest possible amount of methanol while an excess of Me6TREN was dissolved in acetone. After addition of the second solution to the first one, a change in colour from light blue to green was observed. An excess of KPF6, dissolved in acetone, was added to the previous solution in order to promote the anion metathesis reaction. The solvent was evaporated and the green solid obtained was dissolved in pure acetone. A white solid remained undissolved on the bottomof the flask (CH3COOK) and was filtered off. The solution was dried under vacuum and the solid dissolved in dichloromethane in order to eliminate the excess of KPF6. After filtration of the solid residue,the solution was reduced in volume and the pure product 2 was precipitated upon addition of n-pentane. Crystals suitable for XRD were grown at low temperature by slow diffusion of n-pentane into a dichloromethane solution of 2. Yield: 86%; Anal. Calc. for[Ni(L1)(CH3COO)](PF6)H2O: C, 32.90; H, 6.90; N, 10.96. Found: C,33.23; H, 6.97; N, 10.93%.

33527-91-2 Tris[2-(dimethylamino)ethyl]amine 263094, achiral-nitrogen-ligands compound, is more and more widely used in various fields.

Reference£º
Article; Tordin, Elisa; List, Manuela; Monkowius, Uwe; Schindler, Siegfried; Knoer, Guenther; Inorganica Chimica Acta; vol. 402; (2013); p. 90 – 96;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

The important role of 110-70-3

With the complex challenges of chemical substances, we look forward to future research findings about N1,N2-Dimethylethane-1,2-diamine

Name is N1,N2-Dimethylethane-1,2-diamine, as a common heterocyclic compound, it belongs to chiral-nitrogen-ligands compound, and cas is 110-70-3, its synthesis route is as follows.,110-70-3

Preparation of Methyl-(2-methylamino-ethyl)-carbamic acid tert-butyl esterTo an ice-cooled solution of N,N’-dimethyethylenediamine (10 ml_, 91.0 mmol) in dry THF (150 ml.) was added a solution of BoC2O (4.97 g, 22.8 mmol) in dry THF (50 ml.) over 30 minutes. The reaction mixture was stirred for 1 h at 00C then at rt overnight, and concentrated in vacuo. The resulting residue was taken up in a mixture of EA and a sat.NH4CI solution. The organic layer was separated, washed with brine, dried (MgSO4), filtered and concentrated under reduced pressure. FC (10 % MeOH in DCM) afforded the title compound as a yellow oil (2.90 g, 17%). LC-MS (analytic A, Zorbax SB-AQ column, acidic conditions): tR = 0.50 min; [M+H]+ 189.40.

With the complex challenges of chemical substances, we look forward to future research findings about N1,N2-Dimethylethane-1,2-diamine

Reference£º
Patent; ACTELION PHARMACEUTICALS LTD; AISSAOUI, Hamed; BOSS, Christoph; CORMINBOEUF, Olivier; FRANTZ, Marie-Celine; GRISOSTOMI, Corinna; WO2010/58353; (2010); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

The important role of 33527-91-2

With the complex challenges of chemical substances, we look forward to future research findings about Tris[2-(dimethylamino)ethyl]amine

Name is Tris[2-(dimethylamino)ethyl]amine, as a common heterocyclic compound, it belongs to chiral-nitrogen-ligands compound, and cas is 33527-91-2, its synthesis route is as follows.,33527-91-2

General procedure: The copper complex Cu5-1 was dissolved in water, and an excessive amount of an aqueous solution of saturated sodium tetrafluoroborate (manufactured by Wako Pure Chemical Industries, Ltd.) was added while stirring. A precipitated solid was collected by filtering and a copper complex Cu5-72 was obtained.

With the complex challenges of chemical substances, we look forward to future research findings about Tris[2-(dimethylamino)ethyl]amine

Reference£º
Patent; FUJIFILM Corporation; Sasaki, Kouitsu; Kawashima, Takashi; Hitomi, Seiichi; Shiraishi, Yasuharu; US10215898; (2019); B2;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

The important role of 31886-58-5

With the complex challenges of chemical substances, we look forward to future research findings about (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine

Name is (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, as a common heterocyclic compound, it belongs to chiral-nitrogen-ligands compound, and cas is 31886-58-5, its synthesis route is as follows.,31886-58-5

b) Preparation of A1 (Mixture of Diastereomers); 15.5 ml (23.2 mmol) of t-butyllithium (t-BuLi) (1.5 M in pentane) are added dropwise to a solution of 5.98 g (23.2 mmol) of (R)-1-dimethylamino-1-ferrocenylethane in 40 ml of DE at <-10 C. After stirring for 10 minutes at the same temperature, the temperature is allowed to rise to room temperature and the mixture is stirred for another 1.5 hours. This gives a solution of the compound X2 which is added via a cannula to the cooled suspension of the monochlorophosphine X1 at such a rate that the temperature does not exceed -30 C. After stirring at -30 C. for a further 10 minutes, the temperature is allowed to rise to 0 C. and the mixture is stirred at this temperature for another 2 hours. The reaction mixture is admixed with 20 ml of water. The organic phase is separated off, dried over sodium sulphate and the solvent is distilled off under reduced pressure on a rotary evaporator. Purification by chromatography (silica gel 60; eluent=heptane/EtOAc/Et3N 85:10:5) gives 11.39 g of the desired product as a mixture of 2 diastereomers. With the complex challenges of chemical substances, we look forward to future research findings about (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine Reference£º
Patent; Chen, Weiping; Spindler, Felix; Nettekoven, Ulrike; Pugin, Benoit; US2010/160660; (2010); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

The important role of 33527-91-2

With the complex challenges of chemical substances, we look forward to future research findings about Tris[2-(dimethylamino)ethyl]amine

Name is Tris[2-(dimethylamino)ethyl]amine, as a common heterocyclic compound, it belongs to chiral-nitrogen-ligands compound, and cas is 33527-91-2, its synthesis route is as follows.,33527-91-2

General procedure: The copper complex Cu5-1 was dissolved in water, and an excessive amount of an aqueous solution of saturated sodium tetrafluoroborate (manufactured by Wako Pure Chemical Industries, Ltd.) was added while stirring. A precipitated solid was collected by filtering and a copper complex Cu5-72 was obtained.

With the complex challenges of chemical substances, we look forward to future research findings about Tris[2-(dimethylamino)ethyl]amine

Reference£º
Patent; FUJIFILM Corporation; Sasaki, Kouitsu; Kawashima, Takashi; Hitomi, Seiichi; Shiraishi, Yasuharu; US10215898; (2019); B2;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis