Introduction of a new synthetic route about 31886-58-5

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, 31886-58-5

31886-58-5, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, cas is 31886-58-5,the chiral-nitrogen-ligands compound, it is a common compound, a new synthetic route is introduced below.

(S)-Ugi-amine 1 (2.57 g, 10 mmol) was dissolved in 25 mL of diethyl ether, and n-butyllithium (8 mL, 2.5 mol/L) was added dropwise to the reaction system under nitrogen protection and ice salt bath cooling. After that, the temperature was slowly raised to room temperature, and the reaction was stirred for 3 hours. Under ice cooling, chlorobis(3,5-dimethylphenyl)phosphine (5.53 g, 20 mmol) was added dropwise thereto, and after the completion of the dropwise addition, the mixture was slowly warmed to room temperature, and the reaction was stirred for 24 hours. The reaction was quenched with saturated sodium bicarbonate solution and extracted with dichloromethane. Dry over anhydrous sodium sulfate, Concentration and column chromatography gave the product 10 (3.03 g, 61%).

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, 31886-58-5

Reference£º
Patent; Zhejiang University of Technology; Zhong Weihui; Ling Fei; Nian Sanfei; (14 pag.)CN108774271; (2018); A;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Application of Thiomorpholine 1,1-dioxide

The chemical industry reduces the impact on the environment during synthesis,31886-58-5,(R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine,I believe this compound will play a more active role in future production and life.

31886-58-5, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, cas is 31886-58-5,the chiral-nitrogen-ligands compound, it is a common compound, a new synthetic route is introduced below.

b) Preparation of L (mixture of diastereomers); To a solution of 5.98 g (23.2 mmol) of (R)-1-dimethylamino-1 -ferrocenylethane in 40 ml of diethyl ether (DE) are added dropwise, at <-10C, 15.5 ml (23.2 mmol) of t-butyllithium (t-BuLi) (1.5 M in pentane). After stirring at the same temperature for 10 minutes, the temperature is allowed to rise to room temperature and the mixture is stirred for another 1.5 hours. This affords a solution of compound X2 which is added via a cannula to the cooled suspension of the monochlorophosphine X1 at a sufficiently slow rate that the temperature does not rise above -300C. After stirring at -300C for a further 10 minutes, the temperature is allowed to rise to 0C and the mixture is stirred at this temperature for another 2 hours. The reaction mixture is admixed with 20 ml of water. The organic phase is removed and dried over sodium sulphate, and the solvent is distilled off under reduced pressure on a rotary evaporator. After chromatographic purification (silica gel 60; eluent = 85:10:5 heptane/ethyl acetate/thethylamine), 11.39 g of the desired product are obtained as a mixture of 2 diastereomers. The chemical industry reduces the impact on the environment during synthesis,31886-58-5,(R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine,I believe this compound will play a more active role in future production and life. Reference£º
Patent; SPEEDEL EXPERIMENTA AG; WO2008/77917; (2008); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Analyzing the synthesis route of 31886-58-5

31886-58-5, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,31886-58-5 ,(R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, other downstream synthetic routes, hurry up and to see

As a common heterocyclic compound, it belongs to chiral-nitrogen-ligands compound, name is (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, and cas is 31886-58-5, its synthesis route is as follows.

15.4 ml of a cyclohexane solution of s-butyllithium (1.3 M, 22 mmol) are added to a solution of 5.14 g (20 mmol) of (R)-N, N-dimethyl-1 -ferrocenylethylamine [(R)-ugi- amine] in 30 ml of t-butyl methyl ether (TBME) at -78C over a period of 10 minutes. The mixture is then heated to room temperature while stirring and maintained at this temperature for 1.5 hours. It is then cooled back down to -78 0C and 2.71 ml(20 mmol) of dichlorophenylphosphine are added over a period of 10 minutes. After stirring at -78C for 10 minutes, the mixture is allowed to warm slowly to room temperature and is stirred at this temperature for 1.5 hours.

31886-58-5, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,31886-58-5 ,(R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, other downstream synthetic routes, hurry up and to see

Reference£º
Patent; SOLVIAS AG; WO2008/55942; (2008); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

New learning discoveries about 110-70-3

110-70-3, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,110-70-3 ,N1,N2-Dimethylethane-1,2-diamine, other downstream synthetic routes, hurry up and to see

Name is N1,N2-Dimethylethane-1,2-diamine, as a common heterocyclic compound, it belongs to chiral-nitrogen-ligands compound, and cas is 110-70-3, its synthesis route is as follows.

To a solution of N,N’-dimethylethylenediamine (300 mg) in DMF (2.0 mL) was added K2CO3 (1.0 g) and compound B (466 mg). The mixture was heated at 80C for 3h. Solvent was evaporated and the residue was extracted with DCM and then purified by a prep-TLC plate (10%MeOH/DCM with 1% NH3 in methanol) to give product as a yellow solid (400 mg, yield 75%).

110-70-3, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,110-70-3 ,N1,N2-Dimethylethane-1,2-diamine, other downstream synthetic routes, hurry up and to see

Reference£º
Patent; ARIAD PHARMACEUTICALS, INC.; ZHU, Xiaotian; WANG, Yihan; SHAKESPEARE, William, C.; HUANG, Wei-Sheng; DALGARNO, David, C.; WO2013/169401; (2013); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

The important role of 110-70-3

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of N1,N2-Dimethylethane-1,2-diamine, 110-70-3

110-70-3, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. N1,N2-Dimethylethane-1,2-diamine, cas is 110-70-3,the chiral-nitrogen-ligands compound, it is a common compound, a new synthetic route is introduced below.

Add in a 100mL single-mouth bottleN1,N2-dimethylethyl-1,2-diamine (4g, 45mmol), cooled to about 0 C in an ice bath,Then (Boc) 2O (5 g, 23 mmol) in DCM (20 mL)The temperature was raised to 25 C and the reaction was stirred for 4 h.Concentrated under reduced pressure, a saturated sodium carbonate solution was added to the residue, and extracted three times with ethyl acetate (30 mL¡Á3).The organic phase was combined, washed three times with saturated brine (20 mL¡Á3) and dried over anhydrous sodiumThe mixture was suction filtered under reduced pressure, and the filtrate was evaporated.The crude product was purified by column chromatography eluting with EtOAc EtOAcConcentration under reduced pressure gave 2.1 g of a yellow oil.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of N1,N2-Dimethylethane-1,2-diamine, 110-70-3

Reference£º
Patent; Beijing Purunao Bio-technology Co., Ltd.; Zhang Peilong; Shi Hepeng; Lan Wenli; Song Zhitao; (250 pag.)CN108707139; (2018); A;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

New learning discoveries about 110-70-3

110-70-3, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,110-70-3 ,N1,N2-Dimethylethane-1,2-diamine, other downstream synthetic routes, hurry up and to see

Name is N1,N2-Dimethylethane-1,2-diamine, as a common heterocyclic compound, it belongs to chiral-nitrogen-ligands compound, and cas is 110-70-3, its synthesis route is as follows.

Example 20Preparation of (E)-methyl 4-(methyl(2-((4Z,7Z,10Z,13Z,16Z,19Z)-N-methyldocosa-4,7,10,13,16,19-hexaenamido)ethyl)amino)-4-oxobut-2-enoate (Compound I-104) tert-Butyl methyl(2-(methylamino)ethyl)carbamate was prepared as follows: N1,N2-dimethylethane-1,2-diamine (40 mmol) was dissolved in 100 mL of CH2Cl2 and cooled to 0 C. A solution of di-tert-butylcarbonate (4.0 mmol) in CH2Cl2 (10 mL) was then added dropwise at 0 C. over a period of 15 min. The resulting reaction mixture was stirred at 0 C. for 30 min and then warmed to room temperature. After stirring at room temperature for 2 h, the reaction mixture was diluted with CH2Cl2 (100 mL). The organic layer was washed with brine (3¡Á25 mL), dried (Na2SO4) and concentrated under reduced pressure to afford tert-butyl methyl(2-(methylamino)ethyl)carbamate. This amine was subjected to the same reaction conditions outlined earlier in the preparation of (E)-methyl 4-(2-(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenamidoethylamino)-4-oxobut-2-enoate. The desired product, namely (E)-methyl 4-(methyl(2-((4Z,7Z,10Z,13Z,16Z,19Z)-N-methyldocosa-4,7,10,13,16,19-hexaenamido)ethyl)amino)-4-oxobut-2-enoate, was obtained after purification by silica gel chromatography. MS (EI) calcd for C31H46N2O4: 510.35. found 511 (M+1).

110-70-3, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,110-70-3 ,N1,N2-Dimethylethane-1,2-diamine, other downstream synthetic routes, hurry up and to see

Reference£º
Patent; Milne, Jill C.; Jirousek, Michael R.; Bemis, Jean E.; Vu, Chi B.; US2011/172240; (2011); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Analyzing the synthesis route of 31886-58-5

31886-58-5, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,31886-58-5 ,(R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, other downstream synthetic routes, hurry up and to see

Name is (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, as a common heterocyclic compound, it belongs to chiral-nitrogen-ligands compound, and cas is 31886-58-5, its synthesis route is as follows.

To a solution of 1.0 g (R)-Ugi amine (3.8 mmol) in dry DCM, 2 cm3 acetic acid anhydride (21 mmol) was added dropwise at room temperature.After 5 h, the reaction mixture was diluted with another portion of DCM (30 cm3) and washed with 5% NaHCO3(4 ¡Á 20 cm3). The collected organic layers were dried over MgSO4 and filtered, and the resulting solution was evaporated under reduced pressure to afford the crude product as an orange crystalline solid (1.04 g, 93%). M.p.: 70-72 C(lit. 70-71 C); 1H NMR (300 MHz, CDCl3):delta = 5.83 (q,J = 6.5 Hz, 1H), 4.29-4.19 (m, 2H), 4.15 (s, 3H), 1.56 (d,J = 6.5 Hz, 3H) ppm.

31886-58-5, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,31886-58-5 ,(R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, other downstream synthetic routes, hurry up and to see

Reference£º
Article; Mravec, Bernard; Plevova, Kristina; ?ebesta, Radovan; Monatshefte fur Chemie; vol. 150; 2; (2019); p. 295 – 302;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Some tips on 110-70-3

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of N1,N2-Dimethylethane-1,2-diamine, 110-70-3

110-70-3, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. N1,N2-Dimethylethane-1,2-diamine, cas is 110-70-3,the chiral-nitrogen-ligands compound, it is a common compound, a new synthetic route is introduced below.

In a 1000 ml three-necked flask equipped with a dropping funnel and a magnetic stirrer, 31.9 g (0.233 mol) of phosphorus trichloride and 500 ml of anhydrous diethyl ether were charged at room temperature in a nitrogen gas atmosphere, and the mixture was cooled to 5C or less in an ice bath. While the resulting reaction mixture was stirred, 25.0 ml (0.233 mol) of N,N’-dimethylethylenediamine were slowly added dropwise to the reaction mixture. Furthermore, 65.0 ml (0.465 mol) of triethylamine were slowly added dropwise. After the reaction mixture was further stirred for 1.5 hours, it was filtered under pressure in a nitrogen gas atmosphere. After the resulting crystals were washed with anhydrous diethyl ether three times, they were purified by vacuum-distillation (0.4 kPa, 44-52C), and 16.28 g of chloro(N,N’-dimethylethylenediamino)phosphine were obtained in the form of a transparent liquid; the yield was 46%. The resulting compound was identified with a nuclear magnetic resonance analyzer (BRUKER Ultra Shield 300 NMR Spectrometer, manufactured by BRUKER Limited.). The resulting spectral data are shown below. 1H-NMR (300 MHz, solvent: CDCl3, standard substance: tetramethylsilane) delta 3.32 (d, 4H) 2.78 (d, 6H) 31P-NMR (121 MHz, solvent: CDCl3, standard substance: triphenylphosphine) delta 171.30 (s, 1P) The structural formula is shown below.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of N1,N2-Dimethylethane-1,2-diamine, 110-70-3

Reference£º
Patent; Kanto Denka Kogyo CO., LTD.; EP1956026; (2008); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Downstream synthetic route of Tris[2-(dimethylamino)ethyl]amine

33527-91-2, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,33527-91-2 ,Tris[2-(dimethylamino)ethyl]amine, other downstream synthetic routes, hurry up and to see

As a common heterocyclic compound, it belongs to chiral-nitrogen-ligands compound, name is Tris[2-(dimethylamino)ethyl]amine, and cas is 33527-91-2, its synthesis route is as follows.

To a solution of tris(2-dimethylaminoethyl)amine (0.404 g, 1.75 mmol) in acetonitrile (4 mL) was added 1-bromotetradecane (1.47 g, 5.32 mmol). Theresulting mixture was heated at reflux with stirring for 23 hours, during which time a white solid was observed. After cooling, and the addition of a cold hexanes/acetone mixture (15 mL, 1:1), to the reaction flask, the precipitate was filtered with a Buchner funnel, and rinsed with a cold hexanes/acetone mixture (20 mL, 1:1), resulting in T-14,14,14 (1.31 g, 70%) as a white powder; mp=229-258 C; ?H NMR(300 MI-Tz, CDC13) 34.10-4.02 (m, 6H), 3.63-3.54 (m, 6H), 3.39-3.22 (m, 24H), 1.73-1.61 (m, 6H), 1.36-1.06 (m, 66H), 0.84-0.77 (m, 9H); ?3C NMR (75 MHz, CD3OD) 365.3, 61.0, 50.1, 46.9, 31.7, 29.4, 29.4, 29.3, 29.3, 29.1, 29.0, 26.1, 22.5, 22.4, 13.1; high resolution mass spectrum (ESI) m/z 273.9766 ([Mj3 calculated for [C54H,,7N4j3t 273.9754). See also Yoshimura et al., 2012, Langmuir 28:9322-933 1.?H and ?3C NMR spectra of compound T-14,14,14 can be found in Figure 53.

33527-91-2, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,33527-91-2 ,Tris[2-(dimethylamino)ethyl]amine, other downstream synthetic routes, hurry up and to see

Reference£º
Patent; TEMPLE UNIVERSITY-OF THE COMMONWEALTH SYSTEM OF HIGHER EDUCATION; VILLANOVA UNIVERSITY; WUEST, William, M.; MINBIOLE, Kevin, P.C.; BARBAY, Deanna, L.; (227 pag.)WO2016/172436; (2016); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

The important role of 110-70-3

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of N1,N2-Dimethylethane-1,2-diamine, 110-70-3

110-70-3, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. N1,N2-Dimethylethane-1,2-diamine, cas is 110-70-3,the chiral-nitrogen-ligands compound, it is a common compound, a new synthetic route is introduced below.

The ligand L1 was synthesized via previously reported procedure[23]. A solution of potassium carbonate (2.55 g, 18.45 mmol)in 10 mL water was dropwise added to the aqueous solution of 2-(chloromethyl)-pyridine hydrochloride (1.5 g, 9.15 mmol in10 mL). After about 30 min. of stirring at room temperature, thereaction mixture was extracted with dichloromethane(3 20 mL). The combined organic extracts were dried over anhydroussodium sulfate. The solution was filtered and the solvent wasremoved under vacuum. The resulted residue was then dissolvedin dichloromethane (10 mL). The dichloromethane solution of 2-chloromethyl-pyridine was added dropwise to a solution of N,N0-dimethylethylenediamine (0.471 mL, 5.34 mmol) in dichloromethane(15 mL). After this addition, 10 mL of aqueous sodiumhydroxide (1 M) was added slowly and the reaction mixture wasstirred for next 60 h at room temperature. After stirring was finished,another fraction of sodium hydroxide (10 mL, 1 M) wasadded rapidly. The reaction mixture was extracted with dichloromethane(3 25 mL) and combined organic portion was dried overanhydrous sodium sulfate. Evaporation of solvent led to isolationof the ligand L1 as a dark orange oil. (1.13 g, Yield 79%) 1H NMR(500 MHz, Methanol-d4) d 7.27 (m, 2H, pyridine ring), 7.50 (d,2H, pyridine ring), 7.76 (m, 2H, pyridine ring), 8.45 (d, 2H, pyridinering), 3.68 (s, 4H, -N-CH2-Py), 2.63 (s, 4H, -CH2-CH2-), 2.26 (s, 6H,N-CH3). IR (cm1): 2945, 2789, 1589, 1569, 1472, 1432, 1360,1304, 1146, 1090, 1031, 994, 635, 614, 418.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of N1,N2-Dimethylethane-1,2-diamine, 110-70-3

Reference£º
Article; Singh, Nirupama; Niklas, Jens; Poluektov, Oleg; Van Heuvelen, Katherine M.; Mukherjee, Anusree; Inorganica Chimica Acta; vol. 455; (2017); p. 221 – 230;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis