New learning discoveries about 110-70-3

110-70-3, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,110-70-3 ,N1,N2-Dimethylethane-1,2-diamine, other downstream synthetic routes, hurry up and to see

Name is N1,N2-Dimethylethane-1,2-diamine, as a common heterocyclic compound, it belongs to chiral-nitrogen-ligands compound, and cas is 110-70-3, its synthesis route is as follows.

To a solution of N,N’-dimethylethylenediamine (300 mg) in DMF (2.0 mL) was added K2CO3 (1.0 g) and compound B (466 mg). The mixture was heated at 80C for 3h. Solvent was evaporated and the residue was extracted with DCM and then purified by a prep-TLC plate (10%MeOH/DCM with 1% NH3 in methanol) to give product as a yellow solid (400 mg, yield 75%).

110-70-3, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,110-70-3 ,N1,N2-Dimethylethane-1,2-diamine, other downstream synthetic routes, hurry up and to see

Reference£º
Patent; ARIAD PHARMACEUTICALS, INC.; ZHU, Xiaotian; WANG, Yihan; SHAKESPEARE, William, C.; HUANG, Wei-Sheng; DALGARNO, David, C.; WO2013/169401; (2013); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Some tips on 110-70-3

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,110-70-3,N1,N2-Dimethylethane-1,2-diamine,its application will become more common.

Name is N1,N2-Dimethylethane-1,2-diamine, as a common heterocyclic compound, it belongs to chiral-nitrogen-ligands compound, and cas is 110-70-3, its synthesis route is as follows.

HL1 was prepared by a modification of a method previouslyreported [23] and characterised by 1H NMR spectroscopy. Theligand was obtained as follows: to a solution of 2-hydroxybenzaldehyde(6.10 mL, 82.95 mmol) in absolute ethanol (250 mL),N,N’-dimethylethylenediamine (13.1 g, 100 mmol) and MgSO4were added. The suspension was stirred at room temperature for16 h and then filtered. The filtrate was concentrated under pressureto yield a yellow liquid, which was purified by distillation ina glass oven. Yield: 14.03 g (88%), b.p.: 145 C. 1H NMR (300 Hz,CDCl3) d: 11.52 (s, 1H, OH); 7.21 (td, J = 8.1 and 1.8 Hz, 1H, H6);6.97 (dd, J = 7.5 and 1.8 Hz, 1H, H4); 6.84 (dd, J = 8.4 and 1.2 Hz,1H, H7); 6.77 (td, J = 7.5 and 1.2 Hz, 1H, H5); 3.42 (s, 1H, H2);3.40 (m, 2H, 2H1); 2.59-2.53 (m, 2H, 2H1); 2.28 (s, 6H, 6H9) ppm.

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,110-70-3,N1,N2-Dimethylethane-1,2-diamine,its application will become more common.

Reference£º
Article; Fondo, Matilde; Doejo, Jesus; Garcia-Deibe, Ana M.; Sanmartin, Jesus; Gonzalez-Bello, Concepcion; Vicente, Ramon; Polyhedron; vol. 100; (2015); p. 49 – 58;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Some tips on Tris[2-(dimethylamino)ethyl]amine

33527-91-2, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,33527-91-2 ,Tris[2-(dimethylamino)ethyl]amine, other downstream synthetic routes, hurry up and to see

As a common heterocyclic compound, it belongs to chiral-nitrogen-ligands compound, name is Tris[2-(dimethylamino)ethyl]amine, and cas is 33527-91-2, its synthesis route is as follows.

To a solution of tris(2-dimethylaminoethyl)amine (0.401 g, 1.74 mmol) in acetonitrile (4 mL) was added 1-bromododecane (1.34 g, 5.38 mmol). The resulting mixture was heated at reflux with stirring for 22 hours, during which time awhite solid was observed. After cooling, and the addition of a cold hexanes/acetone mixture (15 mL, 1:1), to the reaction flask, the precipitate was filtered with a Buchner funnel, and rinsed with a cold hexanes/acetone mixture (20 mL, 1:1), resulting in T-12,12,12 (1.39 g, 82%) as a white powder; mp=225-254 C; ?H NMR (300 JVII-Tz, CDC13) oe 4.11-4.03 (m, 6H), 3.63-3.55 (m, 6H), 3.39-3.32 (m, 6H), 3.30(s, 18H), 1.72-1.62 (m, 6H), 1.37-1.14 (m, 54H), 0.84-0.78 (m, 9H); ?3C NMR (75 MHz, CD3OD) 3 65.3, 61.0, 50.1, 46.8, 31.7, 29.4, 29.3, 29.3, 29.1, 29.0, 26.1, 22.4, 22.4, 13.1; high resolution mass spectrum (ESI) m/z 245.9435 ([Mj3 calculated for [C48H,o5N4j3: 245.9441). See also Yoshimura et al., 2012, Langmuir 28:9322-933 1. ?H and ?3C NMR spectra of compound T-12,12,12 can be found in Figure 52.

33527-91-2, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,33527-91-2 ,Tris[2-(dimethylamino)ethyl]amine, other downstream synthetic routes, hurry up and to see

Reference£º
Patent; TEMPLE UNIVERSITY-OF THE COMMONWEALTH SYSTEM OF HIGHER EDUCATION; VILLANOVA UNIVERSITY; WUEST, William, M.; MINBIOLE, Kevin, P.C.; BARBAY, Deanna, L.; (227 pag.)WO2016/172436; (2016); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

The important role of 33527-91-2

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,33527-91-2,Tris[2-(dimethylamino)ethyl]amine,its application will become more common.

It is a common heterocyclic compound, the chiral-nitrogen-ligands compound, Tris[2-(dimethylamino)ethyl]amine, cas is 33527-91-2 its synthesis route is as follows.

General procedure: The copper complex Cu5-1 was dissolved in water, and an excessive amount of an aqueous solution of saturated sodium tetrafluoroborate (manufactured by Wako Pure Chemical Industries, Ltd.) was added while stirring. A precipitated solid was collected by filtering and a copper complex Cu5-72 was obtained.

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,33527-91-2,Tris[2-(dimethylamino)ethyl]amine,its application will become more common.

Reference£º
Patent; FUJIFILM Corporation; Sasaki, Kouitsu; Kawashima, Takashi; Hitomi, Seiichi; Shiraishi, Yasuharu; US10215898; (2019); B2;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Analyzing the synthesis route of 31886-58-5

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, 31886-58-5

31886-58-5, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, cas is 31886-58-5,the chiral-nitrogen-ligands compound, it is a common compound, a new synthetic route is introduced below.

(S)-Ugi-amine 1 (2.57 g, 10 mmol) was dissolved in 25 mL of diethyl ether, and n-butyllithium (8 mL, 2.5 mol/L) was added dropwise to the reaction system under nitrogen protection and ice salt bath cooling. After that, the temperature was slowly raised to room temperature, and the reaction was stirred for 3 hours. To the ice salt bath, chlorobis(3,5-di-t-butylphenyl)phosphine (8.90 g, 20 mmol) was added dropwise thereto, and after the completion of the dropwise addition, the mixture was slowly warmed to room temperature, and the reaction was stirred for 24 hours. The reaction was quenched with saturated sodium bicarbonate solution and extracted with dichloromethane. Dry over anhydrous sodium sulfate, Concentration and column chromatography gave product 7 (3.79 g, 57%).

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, 31886-58-5

Reference£º
Patent; Zhejiang University of Technology; Zhong Weihui; Ling Fei; Nian Sanfei; (14 pag.)CN108774271; (2018); A;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

New learning discoveries about 33527-91-2

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,33527-91-2,Tris[2-(dimethylamino)ethyl]amine,its application will become more common.

33527-91-2, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Tris[2-(dimethylamino)ethyl]amine, cas is 33527-91-2,the chiral-nitrogen-ligands compound, it is a common compound, a new synthetic route is introduced below.

General procedure: LiBEt3H (1 mL, 1.0 M in THF, 1 mmol) and Me6TREN (0.26 mL,1 mmol) were added to 5 mL of hexane, precipitating a white powder.THF was slowly added dropwise with stirring until a homogeneoussolution was obtained (approx. 3 mL) Cooling of the solutionat 30 C yielded X-ray quality colorless crystals

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,33527-91-2,Tris[2-(dimethylamino)ethyl]amine,its application will become more common.

Reference£º
Article; Kennedy, Alan R.; McLellan, Ross; McNeil, Greg J.; Mulvey, Robert E.; Robertson, Stuart D.; Polyhedron; vol. 103; (2016); p. 94 – 99;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

New learning discoveries about 110-70-3

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand N1,N2-Dimethylethane-1,2-diamine reaction routes.

110-70-3, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. N1,N2-Dimethylethane-1,2-diamine, cas is 110-70-3,the chiral-nitrogen-ligands compound, it is a common compound, a new synthetic route is introduced below.

The ligand BPMEN was synthesized via a previouslyreported procedure (Singh et al. 2017). A solution of potassiumcarbonate (5.1 g, 37 mmol) in 15 mL water was dropwiseadded to the aqueous solution of 2-(chloromethyl)-pyridine hydrochloride (3 g, 18.3 mmol in 10 mL). Afterabout 30 min of stirring at room temperature, the reactionmixture was extracted with dichloromethane (3 ¡Á 20 mL).The combined organic extracts were dried over anhydroussodium sulfate. The solution was filtered, and the solventwas removed under vacuum. The resulted residue was thendissolved in dichloromethane (10 mL). The above solutionwas added dropwise to a solution of N,N?-dimethylethylenediamine(0.942 mL, 8.75 mmol) in dichloromethane(25 mL). After this addition, 20 mL of aqueous sodiumhydroxide (1 M) was added slowly and the reaction mixturewas stirred for next 60 h at room temperature. After stirringwas finished, another fraction of sodium hydroxide (20 mL,1 M) was added rapidly. The reaction mixture was extractedwith dichloromethane (3 ¡Á 50 mL) and the combined organicportion was dried over anhydrous sodium sulfate. Evaporationof solvent led to isolation of the ligand BPMEN as adark orange oil. (2.1 g, Yield – 89%) 1H NMR (500 MHz,Methanol-d4) delta 8.45 (d, 2H, pyridine ring), 7.76 (m, 2H, pyridinering), 7.52 (d, 2H, pyridine ring), 7.30 (m, 2H, pyridinering), 3.67 (s, 4H, -N-CH2-Py), 2.63 (s, 4H, -CH2-CH2-),2.26 (s, 6H, N-CH3). ESI-MS+: [BPMEN + H]+ = 271.15 m/z+ (experimental) 271.19 m/z+ (theoretical).

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand N1,N2-Dimethylethane-1,2-diamine reaction routes.

Reference£º
Article; Botcha, Niharika Krishna; Gutha, Rithvik R.; Sadeghi, Seyed M.; Mukherjee, Anusree; Photosynthesis Research; vol. 143; 2; (2020); p. 143 – 153;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Some tips on (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine

The chemical industry reduces the impact on the environment during synthesis,31886-58-5,(R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine,I believe this compound will play a more active role in future production and life.

31886-58-5, A common heterocyclic compound, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.”31886-58-5

Weigh I (5.0g, 19.4mmol) in 100mL reaction flask, dissolved with 50.0mL of ether, Sec-butyllithium (44.9 mL, 58.3 mmol, 1.3 M) was added dropwise to the reaction flask under nitrogen atmosphere, Stirred at room temperature for 2h, Weigh diphenylphosphine chloride (4.2mL, 23.3mmol) was added dropwise to the reaction flask, Warmed to reflux, 4h after the reaction is completed, The reaction solution was poured into water to quench, Extraction with ethyl acetate, drying, Ethyl acetate was removed by rotary evaporation, Purification by column chromatography on residue gave 7.5 g of the target compound VIII, Yield: 87.4%, yellow solid. Mass spectral analysis MALDI-TOF-MS m / z: 441 (M +).

The chemical industry reduces the impact on the environment during synthesis,31886-58-5,(R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine,I believe this compound will play a more active role in future production and life.

Reference£º
Patent; Shanghai Maosheng Kanghui Technology Co., Ltd.; Jiang Xuefeng; Ying Yongcheng; Teng Haige; Chen Pei; (20 pag.)CN107286202; (2017); A;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Application of (R)-4-(tert-Butoxycarbonyl)thiomorpholine-3-carboxylic acid

119139-23-0, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,119139-23-0 ,3,4-Di(1H-indol-3-yl)-1H-pyrrole-2,5-dione, other downstream synthetic routes, hurry up and to see

Name is 3,4-Di(1H-indol-3-yl)-1H-pyrrole-2,5-dione, as a common heterocyclic compound, it belongs to chiral-nitrogen-ligands compound, and cas is 119139-23-0, its synthesis route is as follows.

General procedure: A reaction flask equipped with a magnetic stirrer was charged with a solution of 3, 4-bisindolylmaleimide (2.1 g, 6.4 mmol) in 100 mL of acetone. Potassium hydroxide (0.40 g, 7.1 mmol) was added to the solution at 0 C and stirred for 0.5 h. Iodomethane (1.6 g, 0.011 mol) or 1-bromooctane (2.4 g, 0.012 mol) was added to the reaction mixture for 3, 4-bisindolyl-1-N-methylmaleimide or 3, 4-bisindolyl-1-N-(n-octyl)maleimide, respectively. The reaction mixture was warmed to room temperature and stirred for 1 h (iodomethane) or 24 h (1-bromooctane). The reaction mixture was concentrated and then dissolved in a mixture of ethyl acetate and water. The organic phase was separated, washed with water once and brine once, dried over anhydrous sodium sulfate. The product was purified by flash chromatography with petroleum ether, ethyl acetate and dichloromethane (V/V = 3:1:2) as eluent.

119139-23-0, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,119139-23-0 ,3,4-Di(1H-indol-3-yl)-1H-pyrrole-2,5-dione, other downstream synthetic routes, hurry up and to see

Reference£º
Article; Zhang, Qianfeng; Chang, Guanjun; Zhang, Lin; Chinese Chemical Letters; vol. 29; 3; (2018); p. 513 – 516;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Analyzing the synthesis route of 110-70-3

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand N1,N2-Dimethylethane-1,2-diamine reaction routes.

As a common heterocyclic compound, it belongs to chiral-nitrogen-ligands compound, name is N1,N2-Dimethylethane-1,2-diamine, and cas is 110-70-3, its synthesis route is as follows.

The ligand 345BPMEN was synthesized by modifying thepreviously reported procedure (Singh et al. 2017). To a solutionof 2-chloromethyl-4-methoxy-3,5-dimethylpyridinehydrochloride 2.032 g (9.15 mmol) in 10 mL of water, asolution of potassium carbonate (2.55 g, (18.45 mmol) inwater (10 mL) was added dropwise. After potassium carbonateaddition, very thick white ppts were formed and solutionsolidified. Additional amount of water (50 mL) was addedinto the mixture. After water addition, the reaction mixturewas stirred at room temperature for next 30 min followed bysolvent extraction with dichloromethane (3 ¡Á 20 mL). Thecombined dichloromethane layer was treated with anhydroussodium sulfate. The solution was filtered, and the solventwas removed by rotatory evaporation. The collected light brown oil was dissolved in dichloromethane (10 mL).The above solution was added dropwise to a solution ofN,N?-dimethylethylenediamine 0.493 mL (4.58 mmol) indichloromethane (15 mL). Aqueous solution of 1 M sodiumhydroxide (10 mL) was slowly added and solution wasstirred for additional 60 h at room temperature. After 60 hof stirring was the rapid addition of a second fraction ofaqueous 1 M sodium hydroxide (10 mL, 10 mmol), the productwas extracted with dichloromethane (3 ¡Á 25 mL). Thecombined organic layers were dried over anhydrous sodiumsulfate and filtered. Subsequently, the excess solvent wasevaporated by vacuum to afford brown color viscous oil(1.71 g, Yield 97%). 1H NMR (500 MHz, Methanol-d4) delta8.08 (s, 2H, pyridine ring), 3.76 (s, 6H, -O-CH3-Py), 3.57(s, 4H, -CH2-CH2-Py), 2.56 (s, 4H, -CH2-CH2-), 2.28 (d,6H, CH3-Py), 2.24 (d, 6H, CH3-Py), 2.16 (s, 6H, -N-CH3).ESI-MS+: [345BPMEN + H]+ = 387.32 m/z+ (experimental)387.27 m/z+ (theoretical).

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand N1,N2-Dimethylethane-1,2-diamine reaction routes.

Reference£º
Article; Botcha, Niharika Krishna; Gutha, Rithvik R.; Sadeghi, Seyed M.; Mukherjee, Anusree; Photosynthesis Research; vol. 143; 2; (2020); p. 143 – 153;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis