The effect of the change of N1,N2-Dimethylethane-1,2-diamine synthetic route on the product

A chemical reaction often occurs in steps, although it may not always be obvious to an observer. Thank you very much for taking the time to read this article. If you are also interested in other aspects of N1,N2-Dimethylethane-1,2-diamine, CAS: 110-70-3, you can also browse my other articles.

One of the major reasons is to use measurements of the macroscopic properties of a system, such as the rate of change in the concentration of reactants or products with time, to discover the sequence of events that occur at the molecular level.110-70-3, N1,N2-Dimethylethane-1,2-diamine, introduce a new downstream synthesis route. 110-70-3

o-Anisaldehyde (10.0 g, 73.4 mmol, 1.0 equiv) was dissolved in EtOH (150 mL) at 25 CC, MAT-dimemylethylenediamine (8.70 mL, 80.8 mmol, 1.1 equiv) was added, and the reaction contents were stirred at 25 C for 24 h before being filtered through a pad of MgS04 and concentrated to afford the desired imidazolidine (15.0 g, 99% yield) as a white solid. Without any additional purification, this material (15.0 g, 72.8 mmol, 1.0 equiv) was dissolved in Et20 (250 mL) and cooled to -40 C. f-BuLi (1.7 M in pentane. 100 mL 170 mmol, 2.34 equiv) was then added dropwise over 1 h at -40 C. Upon completion, the resultant orange reaction contents were warmed slowly to -20 C. stirred for an additional 7 h, and then transferred by cannula over 5 min into a flask containing (CBrCl2)2 (55.3 g, 170 mmol, 2.34 equiv) in Et20 (250 mL) at 0 C. The reaction contents were then stirred for 12 h, during which time they were warmed to 25 C; upon completion, the solution was recooled to 0 C and 1 M HCI (500 mL) was added slowly. The resultant solution was stirred for 1 h at 0 C, quickly warmed to 25 C, and then quenched by the addition of water (500 mL). The reaction contents were then extracted with EtOAc (3 x 250 mL), and the combined organic extracts were washed with water (500 mL) and brine (250 mL). dried (MgSO-i), and 73 concentrated.’23’ The resultant crude yellow solid was purified by flash column chromatography (silica gel, hexanes EtOAc, 9/1) to give the desired brominated product 28 (8.12 g, 52% yield) as a white solid. This material (8.12 g, 37.8 mmol, 1.0 equiv) was suspended in MeOH (100 mL) at 25 C and cooled to 0 C. NaBHj (2.88g , 75.6 mmol, 2.0 equiv) was added portionwise and the reaction contents were stirred for 1 h at 0 C. Upon completion, the reaction contents were quenched with water (100 mL) and concentrated. The reaction contents were redissolved in EtOAc ( 100 mL), poured into water (100 mL), and extracted with EtOAc (3 x 50 mL). The combined organic extracts were washed with water ( 150 mL) and brine (50 mL), dried (MgSO- , and concentrated to afford the desired alcohol (7.83 g, 96%) as a white solid. Pressing forward without any additional purification, this newly prepared material (7.83 g, 36.1 mmol, 1.0 equiv) was dissolved in EtjO (180 mL) and pyridine (0.437 mL, 5.41 mmol, 0.15 equiv) and PBr^ (3.41 mL, 36.1 mmol, 1.0 equiv) were added sequentially at 25 C. The reaction contents were then stirred for 4 h at 25 C. Upon completion, the reaction contents were quenched by the addition of water (100 mL), poured into water ( 100 ml), and extracted with EtOAc (3 x 150 mL). The combined organic extracts were washed with water (200 mL) and brine (100 mL), dried (MgS04), and concentrated to give the desired bromide (10.0 g, 99%) as a white solid. [Note: This product quickly decomposes on standing once it is neat and should be carried forward immediately. | Finally, KHMDS (0.5 M in toluene, 129 mL, 64.5 mmol, 1.8 equiv) was added to a solution of diethyl phosphite (9.19 mL, 71.4 mmol, 2.0 equiv) in THF (100 mL) at 0 C and stirred for 15 min. To this solution was added dropwise a solution of the freshly prepared bromide (10.0 g, 35.7 mmol, 1.0 equiv) dissolved in THF (100 mL), and the reaction contents were stirred for 12 h with slow warming to 25 C. Upon completion, the reaction contents were quenched with saturated NH4CI (150 mL), poured into water (150 mL), and extracted with EtOAc (3 x 150 mL). The combined organic extracts were washed with water (100 mL) and brine (100 mL), dried (MgS04), and concentrated to give the phosphonate 31 (10.79 g, 90%) as a colorless oil. 31: R/ = 0.21 (silica gel, EtOAc); IR (film) vmax 2981, 1589, 1572, 1466, 1435, 1267, 1082, 965, 864, 771 ; NMR (400 MHz, CDCI3) delta 7.18 (d, / = 8.0 Hz, 1 H), 7.07 (app dt, J = 8.0, 2.4 Hz, 1 H), 6.81 (d, J = 8.4 Hz, 1 H), 4.05 (dq, J = 7.2, 7.2 Hz, 4 H), 3.85 (s, 3 H), 3.50 (d, J = 22.0 Hz, 2 H), 1.26 (t, J = 7.2 Hz, 6 H); l3C NMR (75 MHz, CDCI3) delta 158.4 (d, J = 5.4 Hz). 128.6 (d, J = 3.8 Hz), 125.8 (d, J = 7.5 Hz), 125.0 (d, J = 3.5 Hz), 121.6 (d, J = 10.6 Hz), 109.4 (d, J = 3.4 Hz), 61.9 (d, J = 6.5 Hz), 55.9, 28.3 (d, J = 139.0 Hz), 16.3 (d, J = 6.4 Hz); HRMS (MALDI-FTMS) calcd for Ci2H|9BrP04+ [M + H*] 337.0204, found 337.0189

A chemical reaction often occurs in steps, although it may not always be obvious to an observer. Thank you very much for taking the time to read this article. If you are also interested in other aspects of N1,N2-Dimethylethane-1,2-diamine, CAS: 110-70-3, you can also browse my other articles.

Reference£º
Patent; THE TRUSTEES OF COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK; SNYDER, Scott Alan; SHERWOOD, Trevor C.; ROSS, Audrey G.; OH, Hyunju; GHOSH, Sankar; WO2011/103442; (2011); A2;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

The effect of 33527-91-2 reaction temperature change on equilibrium

33527-91-2, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,33527-91-2 ,Tris[2-(dimethylamino)ethyl]amine, other downstream synthetic routes, hurry up and to see

33527-91-2, Rate laws may be derived directly from the chemical equations for elementary reactions. This is not the case, however, for ordinary chemical reactions.33527-91-2, name is Tris[2-(dimethylamino)ethyl]amine, below Introduce a new synthetic route.

Mixturing of Co(CH3COO)24H2O (57 mg, 0,23 mmol) and Me6TREN (in excess) was followed by sonication until all the pink cobalt salt was transformed into a bright green oil. The excess of ligand was washed away with diethyl ether.

33527-91-2, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,33527-91-2 ,Tris[2-(dimethylamino)ethyl]amine, other downstream synthetic routes, hurry up and to see

Reference£º
Article; Tordin, Elisa; List, Manuela; Monkowius, Uwe; Schindler, Siegfried; Knoer, Guenther; Inorganica Chimica Acta; vol. 402; (2013); p. 90 – 96;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Flexible application of Tris[2-(dimethylamino)ethyl]amine in synthetic route

33527-91-2, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,33527-91-2 ,Tris[2-(dimethylamino)ethyl]amine, other downstream synthetic routes, hurry up and to see

The molecularity of an elementary reaction is the number of molecules that collide during that step in the mechanism. If there is only a single reactant molecule in an elementary reaction, that step is designated as unimolecular.33527-91-2, name is Tris[2-(dimethylamino)ethyl]amine. A new synthetic method of this compound is introduced below. , 33527-91-2

Ni(CH3COO)2 (53 mg, 0,30 mmol) was dissolved in the smallest possible amount of methanol while an excess of Me6TREN was dissolved in acetone. After addition of the second solution to the first one, a change in colour from light blue to green was observed. An excess of KPF6, dissolved in acetone, was added to the previous solution in order to promote the anion metathesis reaction. The solvent was evaporated and the green solid obtained was dissolved in pure acetone. A white solid remained undissolved on the bottomof the flask (CH3COOK) and was filtered off. The solution was dried under vacuum and the solid dissolved in dichloromethane in order to eliminate the excess of KPF6. After filtration of the solid residue,the solution was reduced in volume and the pure product 2 was precipitated upon addition of n-pentane. Crystals suitable for XRD were grown at low temperature by slow diffusion of n-pentane into a dichloromethane solution of 2. Yield: 86%; Anal. Calc. for[Ni(L1)(CH3COO)](PF6)H2O: C, 32.90; H, 6.90; N, 10.96. Found: C,33.23; H, 6.97; N, 10.93%.

33527-91-2, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,33527-91-2 ,Tris[2-(dimethylamino)ethyl]amine, other downstream synthetic routes, hurry up and to see

Reference£º
Article; Tordin, Elisa; List, Manuela; Monkowius, Uwe; Schindler, Siegfried; Knoer, Guenther; Inorganica Chimica Acta; vol. 402; (2013); p. 90 – 96;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

The effect of the change of 33527-91-2 synthetic route on the product

A chemical reaction often occurs in steps, although it may not always be obvious to an observer. Thank you very much for taking the time to read this article. If you are also interested in other aspects of Tris[2-(dimethylamino)ethyl]amine, CAS: 33527-91-2, you can also browse my other articles.

33527-91-2, An elementary termolecular reaction involves the simultaneous collision of three atoms, molecules, or ions.119139-23-0, name is 3,4-Di(1H-indol-3-yl)-1H-pyrrole-2,5-dione. Here is a downstream synthesis route of the compound 119139-23-0

To a solution of tris(2-dimethylaminoethyl)amine (0.426 g, 1.85mmol) in acetonitrile (4 mL) was added 1-bromodecane (1.27 g, 5.73 mmol). Theresulting mixture was heated at reflux with stirring for 18 hours. After cooling, and the addition of hexanes (5 mL), a white solid precipitated, which was filtered with a Buchner funnel, transferring with a cold hexanes/acetone mixture (15 mL, 1:1). The solid was rinsed with a cold hexanes/acetone mixture (2O mL, 1:1), resulting in T10 10,10,10 (1.16 g, 70%) as a white powder; mp=223-248 C; ?H NMR (300 MHz,CDC13) oe 4.11-4.02 (m, 6H), 3.62-3.53 (m, 6H), 3.41-3.27 (m, 24H), 1.72-1.62 (m, 6H), 1.38-1.14 (m, 42H), 0.85-0.78 (m, 9H); ?3C NMR (75 MHz, CD3OD) oe 65.4,61.1, 50.2, 46.9, 31.6, 29.2, 29.0, 28.9, 26.1, 22.4, 22.3, 13.0; high resolution mass spectrum (ESI) m/z 217.9095 ([Mj3 calculated for [C42H93N4j3: 217.9128). See alsoYoshimura et al., 2012, Langmuir 28:9322-9331. ?H and ?3C NMR spectra of compound T-10,10,10 can be found in Figure 50.

A chemical reaction often occurs in steps, although it may not always be obvious to an observer. Thank you very much for taking the time to read this article. If you are also interested in other aspects of Tris[2-(dimethylamino)ethyl]amine, CAS: 33527-91-2, you can also browse my other articles.

Reference£º
Patent; TEMPLE UNIVERSITY-OF THE COMMONWEALTH SYSTEM OF HIGHER EDUCATION; VILLANOVA UNIVERSITY; WUEST, William, M.; MINBIOLE, Kevin, P.C.; BARBAY, Deanna, L.; (227 pag.)WO2016/172436; (2016); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Flexible application of 3,4-Di(1H-indol-3-yl)-1H-pyrrole-2,5-dione in synthetic route

119139-23-0, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,119139-23-0 ,3,4-Di(1H-indol-3-yl)-1H-pyrrole-2,5-dione, other downstream synthetic routes, hurry up and to see

The molecularity of an elementary reaction is the number of molecules that collide during that step in the mechanism. If there is only a single reactant molecule in an elementary reaction, that step is designated as unimolecular.119139-23-0, name is 3,4-Di(1H-indol-3-yl)-1H-pyrrole-2,5-dione. A new synthetic method of this compound is introduced below. , 119139-23-0

Example 1 12,13-(2,3-dihydroxy-butan-1,4-yl)-6,7,12,13-tetrahydro-5-oxo-5H-indolo[2,3-a]pyrrolo[3,4-c]carbazole (Compound 14) Palladium dichloride (7.4 g, 41.6 mmoles) was added to a solution of acryrubin A Compound 1a (2.9 g, 8.86 mmol) (prepared as described in Faul M M, Winneroski L L and Krumrich C A, Journal of Organic Chemistry, 1998, 63, 6053-6058) in DMF (100 mL) at 90 C. The reaction temperature was kept at 90 C. for 1 hr. The mixture was cooled and conc. HCl (50 mL), then water (50 mL) was added. The mixture was poured over ice and the resulting precipitate was filtered off. The solids were washed with H2O and MeOH, then dissolved in THF (200 mL) and acetone (200 mL) and the remaining solids were filtered off. The solution was filtered through a plug of silica gel and the solvent was removed under vacuum. The resulting residue was diluted with MeOH, the solids were filtered and washed with MeOH then dried to provide acryflavin A Compound 1b (2 g, 70%) as a brown solid.

119139-23-0, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,119139-23-0 ,3,4-Di(1H-indol-3-yl)-1H-pyrrole-2,5-dione, other downstream synthetic routes, hurry up and to see

Reference£º
Patent; Wilson, Lawrence J.; Murray, William V.; Yang, Shyh-Ming; Yang, Cangming; Wang, Bingbing; US2007/249590; (2007); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Fun Route: New Discovery of N1,N2-Dimethylethane-1,2-diamine

This molecular description is the mechanism of the reaction; it describes how individual atoms, ions, or molecules interact to form particular products.If you are interested, you can also browse other articles of N1,N2-Dimethylethane-1,2-diamine, We look forward to the emergence of more reaction modes in the future.

110-70-3, Rate laws may be derived directly from the chemical equations for elementary reactions. This is not the case, however, for ordinary chemical reactions.110-70-3, name is N1,N2-Dimethylethane-1,2-diamine, below Introduce a new synthetic route.

General procedure: CD-1 to CD-9 were synthesized according to the procedure reported in Ref. [18]; a representative synthesis is shown in Scheme 2. Nucleophilic substitution of mono(6-O-p- tolylsulfonyl)-beta-CD (6.4459 g, 5 mmol) with the corresponding amine (25 mmol) was performed by reaction in anhydrous dimethylformamide (DMF) at 80 C in a nitrogen atmospherefor 24.0 h, followed by cooling to room temperature. (S)-Prolinamide and (R)-prolinamide were reduced with LiAlH4 to (S)-2-aminomethylpyrrolidine and (R)-2- aminomethylpyrrolidine.

This molecular description is the mechanism of the reaction; it describes how individual atoms, ions, or molecules interact to form particular products.If you are interested, you can also browse other articles of N1,N2-Dimethylethane-1,2-diamine, We look forward to the emergence of more reaction modes in the future.

Reference£º
Article; Zhu, Qingying; Shen, Haimin; Yang, Zhujin; Ji, Hongbing; Cuihua Xuebao/Chinese Journal of Catalysis; vol. 37; 8; (2016); p. 1227 – 1234;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Fun Route: New Discovery of Tris[2-(dimethylamino)ethyl]amine

This molecular description is the mechanism of the reaction; it describes how individual atoms, ions, or molecules interact to form particular products.If you are interested, you can also browse other articles of 33527-91-2, We look forward to the emergence of more reaction modes in the future.

33527-91-2, Rate laws may be derived directly from the chemical equations for elementary reactions. This is not the case, however, for ordinary chemical reactions.33527-91-2, name is Tris[2-(dimethylamino)ethyl]amine, below Introduce a new synthetic route.

To a solution of tris(2-dimethylaminoethyl)amine (0.486 g, 2.11 mmol) in acetonitrile (4 mL) was added 1-bromoundecane (1.55 g, 6.57 mmol). The resulting mixture was heated at reflux with stirring for 19 hours. After cooling, and the addition of hexanes (5 mL), a white solid precipitated, which was filtered with aBuchner funnel, transferring with a cold hexanes/acetone mixture (15 mL, 1:1). The solid was rinsed with a cold hexanes/acetone mixture (2O mL, 1:1), resulting in T11,11,11 (1.62 g, 82%) as a white powder; mp=224-253 C; ?H NMR (300 MHz, CDC13) oe 4. 12-4.03 (m, 6H), 3.65-3.56 (m, 6H), 3.45-3.37 (m, 6H), 3.34 (s, 18H), 1.79-1.66 (m, 6H), 1.41-1.18 (m, 48H), 0.89-0.82 (m, 9H); ?3C NMR (75 MHz,CD3OD) oe 65.4, 61.1, 50.1, 46.9, 31.6, 29.3, 29.3, 29.2, 29.0, 28.9, 26.1, 22.4, 22.3,13.0; high resolution mass spectmm (ESI) m/z 231.9281 ([Mj3 calculated for [C45H99N4j3: 231.9284). ?H and ?3C NMR spectra of compound T-11,11,11 can be found in Figure 51.

This molecular description is the mechanism of the reaction; it describes how individual atoms, ions, or molecules interact to form particular products.If you are interested, you can also browse other articles of 33527-91-2, We look forward to the emergence of more reaction modes in the future.

Reference£º
Patent; TEMPLE UNIVERSITY-OF THE COMMONWEALTH SYSTEM OF HIGHER EDUCATION; VILLANOVA UNIVERSITY; WUEST, William, M.; MINBIOLE, Kevin, P.C.; BARBAY, Deanna, L.; (227 pag.)WO2016/172436; (2016); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

The effect of the change of 33527-91-2 synthetic route on the product

A chemical reaction often occurs in steps, although it may not always be obvious to an observer. Thank you very much for taking the time to read this article. If you are also interested in other aspects of Tris[2-(dimethylamino)ethyl]amine, CAS: 33527-91-2, you can also browse my other articles.

33527-91-2, An elementary termolecular reaction involves the simultaneous collision of three atoms, molecules, or ions.31886-58-5, name is (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine. Here is a downstream synthesis route of the compound 31886-58-5

To a solution of tris[2-(dimethylamino)ethyl]amine (L4)(0.500 g, 2.17 mmol) in MeOH was added Ni(NO3)26H2O(0.0.631 g, 2.17 mmol), followed by stirring at RT for 12 h. A greenprecipitate was obtained after evaporating the reaction solutionand dried. Yield (0.919 g, 98%).

A chemical reaction often occurs in steps, although it may not always be obvious to an observer. Thank you very much for taking the time to read this article. If you are also interested in other aspects of Tris[2-(dimethylamino)ethyl]amine, CAS: 33527-91-2, you can also browse my other articles.

Reference£º
Article; Sivanesan, Dharmalingam; Seo, Bongkuk; Lim, Choong-Sun; Kim, Hyeon-Gook; Journal of Catalysis; vol. 382; (2020); p. 121 – 128;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

The effect of 31886-58-5 reaction temperature change on equilibrium

Thank you very much for taking the time to read this article. If you are also interested in other aspects of (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, CAS: 31886-58-5, you can also browse my other articles.

One of the major reasons is to use measurements of the macroscopic properties of a system, such as the rate of change in the concentration of reactants or products with time, to discover the sequence of events that occur at the molecular level.31886-58-5, (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, introduce a new downstream synthesis route. 31886-58-5

The compound having the structure shown in Formula (II) of FIG. 4 was made using the scheme set forth in FIG. 1. First, alpha-Dimethylaminoethylferrocene, (14.30 g, 55.61 mmol), (as Compound 1) was dissolved in solvent (85 ml) under argon. N-butyl lithium (1.6 M) was added slowly (22.6 ml, 66.73 mmol, 1.2 eq.) and the reaction was stirred at room temperature for one hour. The solution was then purged with argon for thirty minutes. Chlorodiphenylphosphine (12.0 ml, 66.73 mmol, 1.2 eq.) in tert-butyl methyl ether (10 ml) was added slowly, and the reaction stirred at room temperature for four hours. The reaction was cooled to 0 C., and saturated sodium bicarbonate solution (57 ml) was added followed by water (45 ml). The composition separated into aqueous and organic phases, and the aqueous layer was removed and washed with toluene, and the resulting toluene was separated from the aqueous layer and combined with the organic layer, with the resulting composition being was dried over magnesium sulfate. The magnesium sulfate hydrate was then removed by filtration. The resulting filtrate solution was concentrated under vacuum to give an orange oil. The resulting oil was dissolved in ethanol and then solvents were removed under vacuum once more. The oil was then recrystallized by dissolving in the minimum amount of hot ethanol (45 ml) and cooling to room temperature. The resulting product, present as an orange solid, contained compound 2, which was 1-alpha-dimethyl-aminoethyl-2-(diphenylphosphino)ferrocene (9.16 g, 20.7 mmol, 31% yield).

Thank you very much for taking the time to read this article. If you are also interested in other aspects of (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, CAS: 31886-58-5, you can also browse my other articles.

Reference£º
Patent; Eastman Chemical Company; How, Rebecca; Clarke, Matt; Hembre, Robert Thomas; Ponasik, James A.; Tolleson, Ginette S.; (17 pag.)US9308527; (2016); B2;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

The effect of 110-70-3 reaction temperature change on equilibrium

Thank you very much for taking the time to read this article. If you are also interested in other aspects of N1,N2-Dimethylethane-1,2-diamine, CAS: 110-70-3, you can also browse my other articles.

One of the major reasons is to use measurements of the macroscopic properties of a system, such as the rate of change in the concentration of reactants or products with time, to discover the sequence of events that occur at the molecular level.110-70-3, N1,N2-Dimethylethane-1,2-diamine, introduce a new downstream synthesis route. 110-70-3

To an ice-cooled solution of N,N’-dimethyethylenediamine (10 mL, 91.0 mmol) in dry THF (150 mL) was added a solution of Boc2O (4.97 g, 22.8 mmol) in dry THF (50 mL) over 30 minutes. The reaction mixture was stirred for 1 h at 0 C. then at rt overnight, and concentrated in vacuo. The resulting residue was taken up in a mixture of EA and a sat. NH4Cl solution. The organic layer was separated, washed with brine, dried (MgSO4), filtered and concentrated under reduced pressure. FC (10% MeOH in DCM) afforded the title compound as a yellow oil (2.90 g, 17%).LC-MS (analytic A, Zorbax SB-AQ column, acidic conditions): tR=0.50 min; [M+H]+=189.40.

Thank you very much for taking the time to read this article. If you are also interested in other aspects of N1,N2-Dimethylethane-1,2-diamine, CAS: 110-70-3, you can also browse my other articles.

Reference£º
Patent; Aissaoui, Hamed; Boss, Christoph; Corminboeuf, Olivier; Frantz, Marie-Celine; Grisostomi, Corinna; US2011/224210; (2011); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis