Final Thoughts on Chemistry for (1S,2R)-1-Amino-2,3-dihydro-1H-inden-2-ol

Enzymes are biological catalysts that produce large increases in reaction rates and tend to be specific for certain reactants and products. In my other articles, you can also check out more blogs about 126456-43-7

Enzyme inhibitors cause a decrease in the reaction rate of an enzyme-catalyzed reaction by binding to a specific portion of an enzyme and thus slowing or preventing a reaction from occurring. Reference of 126456-43-7,126456-43-7, name is (1S,2R)-1-Amino-2,3-dihydro-1H-inden-2-ol. In an article,Which mentioned a new discovery about 126456-43-7

By a small modification in the core structure of the previously reported series of HIV-1 protease inhibitors that encompasses a tertiary alcohol as part of the transition-state mimicking scaffold, up to 56 times more potent compounds were obtained exhibiting EC50 values down to 3 nM. Three of the inhibitors also displayed excellent activity against selected resistant isolates of HIV-1. The synthesis of 25 new and optically pure HIV-1 protease inhibitors is reported, along with methods for elongation of the inhibitor P1? side chain using microwave-accelerated, palladium-catalyzed cross-coupling reactions, the biological evaluation, and X-ray data obtained from one of the most potent analogues cocrystallized with both the wild type and the L63P, V82T, I84 V mutant of the HIV-1 protease.

Enzymes are biological catalysts that produce large increases in reaction rates and tend to be specific for certain reactants and products. In my other articles, you can also check out more blogs about 126456-43-7

Reference:
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis—I. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations,
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis