Chemistry is a science major with cience and engineering. The main research directions are chemical synthesis, new energy materials, nano-ceramics, nano-hybrid composite materials, preparation and modification of special coatings, In an article, 126456-43-7, name is (1S,2R)-1-Amino-2,3-dihydro-1H-inden-2-ol, introducing its new discovery. Safety of (1S,2R)-1-Amino-2,3-dihydro-1H-inden-2-ol
Synergistic Stereocontrol in the Enantioselective Ruthenium-Catalyzed Sulfoxidation of Spirodithiolane-Indolones
A chiral ruthenium catalyst was developed for the enantioselective sulfoxidation of the title compounds. The catalyst combines two elements of chirality, a chiral pybox ligand and a chiral bicylic lactam unit, to which the ligand is attached. The latter unit was shown to improve significantly the performance of the catalyst by exposing one of the two enantiotopic sulfur atoms to the active site via hydrogen-bond mediated coordination. Ten differently substituted substrates were converted into the respective sulfoxides in yields of 52-71% and with ?90% ee. Hand-in-hand: Two spatially remote chiral entities act synergistically together in the Ru-catalyzed sulfoxidation reaction of the title compounds. Hydrogen bonds and pi-pi interactions are invoked to explain the preferential formation of a single stereoisomer in this reaction. High enantioselectivities (90-99% ee).
The design and synthesis of related molecules that are more effective, more selective, and less toxic than aspirin are important objectives of biomedical research.Safety of (1S,2R)-1-Amino-2,3-dihydro-1H-inden-2-ol, If a proposed mechanism predicts the wrong experimental rate law, however, the mechanism must be incorrect.Welcome to check out more blogs about 126456-43-7, in my other articles.
Reference:
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis—I. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations,
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis