Some tips on 110-70-3

As the paragraph descriping shows that 110-70-3 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.110-70-3,N1,N2-Dimethylethane-1,2-diamine,as a common compound, the synthetic route is as follows.

2, phosphorus trichloride (27.5g, 0.2mol) and triethylamine (40.5g, 0.4mol) was dissolved in 200mL n-hexane, the solution was placed in an ice water bath cooled to 0-5 C;N,N-dimethylethylenediamine (17.6 g, 0.2 mol) was slowly added dropwise to the solution under stirring.Hexane solution; after the addition is complete, the ice water bath is removed, and the temperature is naturally raised to room temperature, continue to react 4h; reaction is over, filter, collect the filtrate, after testing,Which contains the product of formula (III) wherein both R groups in formula (III) are methyl;

As the paragraph descriping shows that 110-70-3 is playing an increasingly important role.

Reference£º
Patent; Wanhua Chemical Group Co., Ltd.; Lv Yingdong; Zhu Longlong; Liu Junxian; Song Mingyan; Xue Yongyong; Li Jinming; Zhang Tao; Li Yuan; (10 pag.)CN107915758; (2018); A;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Downstream synthetic route of 33527-91-2

The synthetic route of 33527-91-2 has been constantly updated, and we look forward to future research findings.

33527-91-2, Tris[2-(dimethylamino)ethyl]amine is a chiral-nitrogen-ligands compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

General procedure: The copper complex Cu5-1 was dissolved in water, and an excessive amount of an aqueous solution of saturated sodium tetrafluoroborate (manufactured by Wako Pure Chemical Industries, Ltd.) was added while stirring. A precipitated solid was collected by filtering and a copper complex Cu5-72 was obtained.

The synthetic route of 33527-91-2 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; FUJIFILM Corporation; Sasaki, Kouitsu; Kawashima, Takashi; Hitomi, Seiichi; Shiraishi, Yasuharu; US10215898; (2019); B2;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Analyzing the synthesis route of 33527-91-2

33527-91-2 Tris[2-(dimethylamino)ethyl]amine 263094, achiral-nitrogen-ligands compound, is more and more widely used in various.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.33527-91-2,Tris[2-(dimethylamino)ethyl]amine,as a common compound, the synthetic route is as follows.

General procedure: The copper complex Cu5-1 was dissolved in water, and an excessive amount of an aqueous solution of saturated sodium tetrafluoroborate (manufactured by Wako Pure Chemical Industries, Ltd.) was added while stirring. A precipitated solid was collected by filtering and a copper complex Cu5-72 was obtained.

33527-91-2 Tris[2-(dimethylamino)ethyl]amine 263094, achiral-nitrogen-ligands compound, is more and more widely used in various.

Reference£º
Patent; FUJIFILM Corporation; Sasaki, Kouitsu; Kawashima, Takashi; Hitomi, Seiichi; Shiraishi, Yasuharu; US10215898; (2019); B2;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Some tips on 31886-58-5

As the paragraph descriping shows that 31886-58-5 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.31886-58-5,(R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine,as a common compound, the synthetic route is as follows.

Weigh I (5.0g, 19.4mmol) in 100mL reaction flask, dissolved with 50.0mL of ether, Sec-butyllithium (44.9 mL, 58.3 mmol, 1.3 M) was added dropwise to the reaction flask under nitrogen atmosphere, Stirred at room temperature for 2h, Weigh diphenylphosphine chloride (4.2mL, 23.3mmol) was added dropwise to the reaction flask, Warmed to reflux, 4h after the reaction is completed, The reaction solution was poured into water to quench, Extraction with ethyl acetate, drying, Ethyl acetate was removed by rotary evaporation, Purification by column chromatography on residue gave 7.5 g of the target compound VIII, Yield: 87.4%, yellow solid. Mass spectral analysis MALDI-TOF-MS m / z: 441 (M +).

As the paragraph descriping shows that 31886-58-5 is playing an increasingly important role.

Reference£º
Patent; Shanghai Maosheng Kanghui Technology Co., Ltd.; Jiang Xuefeng; Ying Yongcheng; Teng Haige; Chen Pei; (20 pag.)CN107286202; (2017); A;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

New learning discoveries about 119139-23-0

The synthetic route of 119139-23-0 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.119139-23-0,3,4-Di(1H-indol-3-yl)-1H-pyrrole-2,5-dione,as a common compound, the synthetic route is as follows.

General procedure: A reaction flask equipped with a magnetic stirrer was charged with a solution of 3, 4-bisindolylmaleimide (2.1 g, 6.4 mmol) in 100 mL of acetone. Potassium hydroxide (0.40 g, 7.1 mmol) was added to the solution at 0 C and stirred for 0.5 h. Iodomethane (1.6 g, 0.011 mol) or 1-bromooctane (2.4 g, 0.012 mol) was added to the reaction mixture for 3, 4-bisindolyl-1-N-methylmaleimide or 3, 4-bisindolyl-1-N-(n-octyl)maleimide, respectively. The reaction mixture was warmed to room temperature and stirred for 1 h (iodomethane) or 24 h (1-bromooctane). The reaction mixture was concentrated and then dissolved in a mixture of ethyl acetate and water. The organic phase was separated, washed with water once and brine once, dried over anhydrous sodium sulfate. The product was purified by flash chromatography with petroleum ether, ethyl acetate and dichloromethane (V/V = 3:1:2) as eluent.

The synthetic route of 119139-23-0 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Zhang, Qianfeng; Chang, Guanjun; Zhang, Lin; Chinese Chemical Letters; vol. 29; 3; (2018); p. 513 – 516;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

 

Brief introduction of 110-70-3

110-70-3 N1,N2-Dimethylethane-1,2-diamine 8070, achiral-nitrogen-ligands compound, is more and more widely used in various.

110-70-3, N1,N2-Dimethylethane-1,2-diamine is a chiral-nitrogen-ligands compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Step 1 : To a solution of N,N’-dimethylethylenediamine (300 mg) in DMF (2.0 mL) was added K2C03 ( 1.0 g) and compound B (466 mg). The mixture was heated at 80C for 3h. Solvent was evaporated and the residue was extracted with DCM and then purified by a prep-TLC plate(10%MeOH/DCM with 1% NH3 in methanol) to give product as a yellow solid (400 mg, yield 75%).

110-70-3 N1,N2-Dimethylethane-1,2-diamine 8070, achiral-nitrogen-ligands compound, is more and more widely used in various.

Reference£º
Patent; ARIAD PHARMACEUTICALS, INC.; DALGARNO, David, C.; HUANG, Wei-sheng; SHAKESPEARE, William, C.; WANG, Yihan; ZHU, Xiaotian; WO2012/151561; (2012); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

 

Analyzing the synthesis route of 31886-58-5

31886-58-5 (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine 16212257, achiral-nitrogen-ligands compound, is more and more widely used in various.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.31886-58-5,(R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine,as a common compound, the synthetic route is as follows.

The compound having the structure shown in Formula (II) of FIG. 4 was made using the scheme set forth in FIG. 1. First, alpha-Dimethylaminoethylferrocene, (14.30 g, 55.61 mmol), (as Compound 1) was dissolved in solvent (85 ml) under argon. N-butyl lithium (1.6 M) was added slowly (22.6 ml, 66.73 mmol, 1.2 eq.) and the reaction was stirred at room temperature for one hour. The solution was then purged with argon for thirty minutes. Chlorodiphenylphosphine (12.0 ml, 66.73 mmol, 1.2 eq.) in tert-butyl methyl ether (10 ml) was added slowly, and the reaction stirred at room temperature for four hours. The reaction was cooled to 0 C., and saturated sodium bicarbonate solution (57 ml) was added followed by water (45 ml). The composition separated into aqueous and organic phases, and the aqueous layer was removed and washed with toluene, and the resulting toluene was separated from the aqueous layer and combined with the organic layer, with the resulting composition being was dried over magnesium sulfate. The magnesium sulfate hydrate was then removed by filtration. The resulting filtrate solution was concentrated under vacuum to give an orange oil. The resulting oil was dissolved in ethanol and then solvents were removed under vacuum once more. The oil was then recrystallized by dissolving in the minimum amount of hot ethanol (45 ml) and cooling to room temperature. The resulting product, present as an orange solid, contained compound 2, which was 1-alpha-dimethyl-aminoethyl-2-(diphenylphosphino)ferrocene (9.16 g, 20.7 mmol, 31% yield).

31886-58-5 (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine 16212257, achiral-nitrogen-ligands compound, is more and more widely used in various.

Reference£º
Patent; Eastman Chemical Company; How, Rebecca; Clarke, Matt; Hembre, Robert Thomas; Ponasik, James A.; Tolleson, Ginette S.; (17 pag.)US9308527; (2016); B2;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

 

New learning discoveries about 110-70-3

The synthetic route of 110-70-3 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.110-70-3,N1,N2-Dimethylethane-1,2-diamine,as a common compound, the synthetic route is as follows.

Synthesis of [N,N?-Dimethyl-N,N?-bis-(pyridine-2-ylmethyl)-1,2-diaminoethane] was taken from a previously reported procedure [16]. 2-(chloromethyl)pyridine hydrochloride (1.501 g, 9.15 mmol) dissolved in 5 mL deionized (DI) water was added dropwise to an aqueous solution containing K2CO3 (2.556 g, 18.49 mmol) dissolved in 7.5 mL DI water. The resulting mixture was stirred for 30 min. The mixture was extracted with CH2Cl2 (3¡Á10 mL). The organic phase was collected and dried with anhydrous Na2SO4. The dried solution was concentrated in vacuo to afford orange oil. A solution containing N,N?-dimethylethylenediamine (0.471 mL, 4.38 mmol) in 15 mL CH2Cl2 was added dropwise to the aforementioned orange oil dissolved in 5 mL CH2Cl2. An aqueous solution containing NaOH (0.311 g, 7.78 mmol) dissolved in 7.6 mL DI water was slowly added to organic mixture and stirred at room temperature. After 60 h, a second portion of NaOH solution(0.318 g, 7.95 mmol) was quickly added to the mixture. The combined mixture was extracted with CH2Cl2 (3¡Á20 mL) and dried with anhydrous Na2SO4. The organic solution was concentrated in vacuo to afford a brown oil, BPMEN (Yield: 0.631 g, 2.33 mmol, 70%) 1H NMR(500 MHz, CD2Cl2) delta 8.46 (dt, 2H, pyridine ring), 7.80 (m, 2H, pyridinering), 7.51 (m, 2H, pyridine ring), 7.30 (m, 2H, pyridine ring), 3.70 (m,4H, -CH2), 2.66 (m, 4H, -CH2), 2.27 (s, 6H, -CH3). ESI-MS (MeOH).Observed m/z 271.25 [BPMEN+H+] (z=1); simulated m/z 271.19.

The synthetic route of 110-70-3 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Pella, Bruce J.; Niklas, Jens; Poluektov, Oleg G.; Mukherjee, Anusree; Inorganica Chimica Acta; vol. 483; (2018); p. 71 – 78;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

 

Some tips on 110-70-3

As the paragraph descriping shows that 110-70-3 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.110-70-3,N1,N2-Dimethylethane-1,2-diamine,as a common compound, the synthetic route is as follows.

To a solution of compound 9-3 (10 g, 36.5 mmol) in EtOH was added dropwise compound 9-3-1 (39 mL, 365 mmol) under nitrogen atmosphere at 0 C., and then the reaction solution was stirred at 20 C. for 2 h, followed by concentration. The residue was purified by column chromatography to give the title compound 9-4 (yellow solid, 5.5 g, Yield 56%). 1H NMR (400 MHz, CDCl3): delta ppm 8.16 (d, J=8.8 Hz, 2H), 7.59 (d, J=8.8 Hz, 2H), 3.80 (s, 1H), 3.60-3.80 (m, 1H), 3.15-3.30 (m, 1H), 3.00-3.10 (m, 1H), 2.93 (s, 3H), 2.60-2.75 (m, 1H), 2.15 (s, 3H).

As the paragraph descriping shows that 110-70-3 is playing an increasingly important role.

Reference£º
Patent; Hubei Bio-Pharmaceutical Industrial Technological Institute Inc.; Humanwell Healthcare (Group) Co., Ltd.; Wang, Xuehai; Wu, Chengde; Xu, Yong; Shen, Chunli; Li, Li’e; Hu, Guoping; Yue, Yang; Li, Jian; Guo, Diliang; Shi, Nengyang; Huang, Lu; Chen, Shuhui; Tu, Ronghua; Yang, Zhongwen; Zhang, Xuwen; Xiao, Qiang; Tian, Hua; Yu, Yanping; Chen, Hailiang; Sun, Wenjie; He, Zhenyu; Shen, Jie; Yang, Jing; Tang, Jing; Zhou, Wen; Yu, Jing; Zhang, Yi; Liu, Quan; (251 pag.)US2017/313683; (2017); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

 

Downstream synthetic route of 110-70-3

The synthetic route of 110-70-3 has been constantly updated, and we look forward to future research findings.

110-70-3, N1,N2-Dimethylethane-1,2-diamine is a chiral-nitrogen-ligands compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

The mixture of N, N’-Dimethylene diamine 21-1 (5 mL, 46.5 mmol) and tert-butyl acrylate 13 mL (116 mmol) was heated at 85 C for 1 hour. Another 13 mL (116 mmol) of tert- butyl acrylate was added. The reaction mixture was continuely heated at 85C for 1 hour and stirred at room temperature overnight. The reaction mixture was concentrated in vacuo. The residue wasdiluted with hexanes and purified by flash column chromatography using SiliaSep Cartridges (120g), eluting with 0-5% methanol/DCM to give 10.1 g (62%) of compound 21-2. MS (ESI) m/z 345 [M+H].

The synthetic route of 110-70-3 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; AMBRX, INC.; MIAO, Zhenwei; ATKINSON, Kyle, C.; BIROC, Sandra; BUSS, Timothy; COOK, Melissa; KRAYNOV, Vadim; MARSDEN, Robin; PINKSTAFF, Jason; SKIDMORE, Lillian; SUN, Ying; SZYDLIK, Angieszka; VALENTA, Ianina; WO2012/166560; (2012); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis