Simple exploration of 110-70-3

As the paragraph descriping shows that 110-70-3 is playing an increasingly important role.

110-70-3, N1,N2-Dimethylethane-1,2-diamine is a chiral-nitrogen-ligands compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

The above mentioned protocol was adapted for preparation ofligand L2. In a solution of 2-(chloromethyl)-3,4-dimethoxypyridinehydrochloride (2.09 g, 9.34 mmol) in 10 mL of water, a solution ofpotassium bicarbonate(2.73 g, 19.74 mmol) in water (10 mL) wasadded dropwise. The reaction mixture was stirred at room temperaturefor next 30 min. After stirring is done, solution was extractedwith dichloromethane (3 20 mL). The combined dichloromethanelayer was treated with anhydrous sodium sulfate. Thesolution was filtered and solvent was removed by rotatory evaporation.The collected light yellow oil was dissolved in dichloromethane(10 mL). The 2-(chloromethyl)-3,4-dimethoxypyridinesolution in dichloromethane was added dropwise to a solution of N,N0-dimethylethylenediamine (0.503 mL, 4.67 mmol) in dichloromethane(15 mL). In the next step aqueous 1 M sodium hydroxide(10 mL) was slowly added and solution was stirred for additional60 h at room temperature. After 60 h of stirring followed by therapid addition of a second fraction of aqueous 1 M sodium hydroxide(10 mL, 10 mmol), the product was extracted with dichloromethane(3 25 mL). The combined organic layers were driedover anhydrous sodium sulfate and filtered. Subsequently, theexcess solvent was evaporated by vacuum to afford yellow colorviscous oil (1.86 g, Yield 89%). 1H NMR (500 MHz, Methanol-d4) d8.14 (d, 2H, pyridine ring), 7.05 (d, 2H, pyridine ring), 3.95 (s,6H,-O-CH3-Py), 3.85 (s, 6H,-O-CH3-Py), 3.66 (s, 4H,-N-CH2-Py),2.67 (s, 4H, -CH2-CH2-), 2.26 (s, 6H, -N-CH3). 13C NMR (126 MHz,Methanol-d4) d 160.77, 152.19, 147.28, 146.07 (d, J = 10.3 Hz),108.87, 61.40, 58.17, 56.43, 56.07, 43.10. ESI-MS (in CH3OH).observed m/z 391.3 [(L2 + H)+] (z = 1); theoretical-391.23[(L2 + H)+] (z = 1). IR (cm1): 3375, 2945, 1626, 1584, 1447, 1425,1261, 1228, 1173, 1073, 994, 828, 651, 603.

As the paragraph descriping shows that 110-70-3 is playing an increasingly important role.

Reference£º
Article; Singh, Nirupama; Niklas, Jens; Poluektov, Oleg; Van Heuvelen, Katherine M.; Mukherjee, Anusree; Inorganica Chimica Acta; vol. 455; (2017); p. 221 – 230;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

New learning discoveries about 110-70-3

The synthetic route of 110-70-3 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.110-70-3,N1,N2-Dimethylethane-1,2-diamine,as a common compound, the synthetic route is as follows.

The compound N,N’-dimethylethylenediamine (20 g, 0.226 mol)Soluble in 100mL of dichloromethane,50 mL of Boc anhydride (14.8 g, 0.068 mol) was added dropwise in an ice water bath.Dichloromethane mixture,Drop the room temperature reaction,The progress of the reaction was monitored by TLC (DCM: MeOH = 10:1). filter,The dry filtrate was concentrated under reduced pressure at 40 C.After the column, the product was 9g.

The synthetic route of 110-70-3 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; Sichuan Bai Li Pharmaceutical Co., Ltd.; Zhu Yi; Li Jie; Wan Weili; Zhuo Shi; Li Gangrui; (28 pag.)CN109106951; (2019); A;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Downstream synthetic route of 33527-91-2

The synthetic route of 33527-91-2 has been constantly updated, and we look forward to future research findings.

33527-91-2, Tris[2-(dimethylamino)ethyl]amine is a chiral-nitrogen-ligands compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

To a solution of tris(2-dimethylaminoethyl)amine (0.486 g, 2.11 mmol) in acetonitrile (4 mL) was added 1-bromoundecane (1.55 g, 6.57 mmol). The resulting mixture was heated at reflux with stirring for 19 hours. After cooling, and the addition of hexanes (5 mL), a white solid precipitated, which was filtered with aBuchner funnel, transferring with a cold hexanes/acetone mixture (15 mL, 1:1). The solid was rinsed with a cold hexanes/acetone mixture (2O mL, 1:1), resulting in T11,11,11 (1.62 g, 82%) as a white powder; mp=224-253 C; ?H NMR (300 MHz, CDC13) oe 4. 12-4.03 (m, 6H), 3.65-3.56 (m, 6H), 3.45-3.37 (m, 6H), 3.34 (s, 18H), 1.79-1.66 (m, 6H), 1.41-1.18 (m, 48H), 0.89-0.82 (m, 9H); ?3C NMR (75 MHz,CD3OD) oe 65.4, 61.1, 50.1, 46.9, 31.6, 29.3, 29.3, 29.2, 29.0, 28.9, 26.1, 22.4, 22.3,13.0; high resolution mass spectmm (ESI) m/z 231.9281 ([Mj3 calculated for [C45H99N4j3: 231.9284). ?H and ?3C NMR spectra of compound T-11,11,11 can be found in Figure 51.

The synthetic route of 33527-91-2 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; TEMPLE UNIVERSITY-OF THE COMMONWEALTH SYSTEM OF HIGHER EDUCATION; VILLANOVA UNIVERSITY; WUEST, William, M.; MINBIOLE, Kevin, P.C.; BARBAY, Deanna, L.; (227 pag.)WO2016/172436; (2016); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Simple exploration of 110-70-3

As the paragraph descriping shows that 110-70-3 is playing an increasingly important role.

110-70-3, N1,N2-Dimethylethane-1,2-diamine is a chiral-nitrogen-ligands compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

A single-neck RBFequipped with a magnetic stirrer was charged with methyl2-bromo-2-(4-nitrophenyl)acetate (3,7.33 g, 26.74 mmol) and EtOH (80 mL). After cooling to 0 C in an ice/waterbath. N,N?-dimethylethane-1,2-diamine (23 g, 0.26 mol) was added to the solution over 5 min. Theresulting solution was stirred at 0 C to 25 C overnight. After evaporation invacuo, the crude mixturewas purified on a silica gel column (MeOH: DCM = 10: 90) to afford compound 4 as a yellow solid (6.70 g, 100%).

As the paragraph descriping shows that 110-70-3 is playing an increasingly important role.

Reference£º
Article; Young, Wendy B.; Barbosa, James; Blomgren, Peter; Bremer, Meire C.; Crawford, James J.; Dambach, Donna; Gallion, Steve; Hymowitz, Sarah G.; Kropf, Jeffrey E.; Lee, Seung H.; Liu, Lichuan; Lubach, Joseph W.; Macaluso, Jen; Maciejewski, Pat; Maurer, Brigitte; Mitchell, Scott A.; Ortwine, Daniel F.; Di Paolo, Julie; Reif, Karin; Scheerens, Heleen; Schmitt, Aaron; Sowell, C. Gregory; Wang, Xiaojing; Wong, Harvey; Xiong, Jin-Ming; Xu, Jianjun; Zhao, Zhongdong; Currie, Kevin S.; Bioorganic and Medicinal Chemistry Letters; vol. 25; 6; (2015); p. 1333 – 1337;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

New learning discoveries about 110-70-3

The synthetic route of 110-70-3 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.110-70-3,N1,N2-Dimethylethane-1,2-diamine,as a common compound, the synthetic route is as follows.

1,4-Dimethyl-3-(4-nitrophenyl)piperazin-2-one (3); A 100-mL single-neck round-bottomed flask equipped with a magnetic stirrer was purged with nitrogen, charged with N1,N2-dimethylethane-1,2-diamine (1.61 g, 18.2 mmol), ethanol (5 mL) and 2 (500 mg, 1.82 mmol), and the reaction was stirred at room temperature for 1 h. After this time, the reaction mixture was evaporated under reduced pressure, and the resulting residue was purified by flash column chromatography to afford an 89% yield (404 mg) of 3 as a yellow oil: 1H NMR (500 MHz, DMSO-d6) delta 8.18 (d, 2H, J=8.5 Hz), 7.60 (d, 2H, J=8.5 Hz), 3.87 (s, 1H), 3.61 (td, 1H, J=12.0, 4.0 Hz), 3.26 (ddd, 1H, J=12.0, 4.0, 2.5 Hz), 3.02 (ddd, 1H, J=12.0, 4.0, 2.5 Hz), 2.84 (s, 3H), 2.64 (td, 1H, J=12.0, 4.0 Hz), 2.06 (s, 3H).

The synthetic route of 110-70-3 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; Zhao, Zhongdong; Zhichkin, Pavel E.; Stafford, Douglas G.; Kropf, Jeffrey E.; BLOMGREN, Peter A.; Currie, Kevin S.; Lee, Seung H.; Mitchell, Scott A.; Xu, Jianjun; Schmitt, Aaron C.; US2009/82330; (2009); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Downstream synthetic route of 110-70-3

The synthetic route of 110-70-3 has been constantly updated, and we look forward to future research findings.

110-70-3, N1,N2-Dimethylethane-1,2-diamine is a chiral-nitrogen-ligands compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

To a solution of N,N’-dimethylethane-l,2-diamine (40.4 g) in DCM (300 mL) was added a solution of Boc20 (10 g, 10.6 mL, 45.8 mmol) in DCM (100 mL) dropwise at 0 C over 1 hr. The reaction mixture was stirred at room temperature for 18 hrs. The organic layer was washed with saturated aqueous NaHC03 (50 mL), brine (50 mL), dried over Na2S04 and concentrated in vacuo. The residue was purified by column chromatography to afford ie/t-butyl N-methyl-N-[2- (methylamino)ethyl]carbamate (6.8 g, Compound BC-1) as a yellow oil. 1H NMR (400MHz, CDC13) delta ppm: 3.34 (br. s., 2H), 2.89 (s, 3H), 2.74 (t, / = 6.7 Hz, 2H), 2.46 (s, 3H), 1.47 (s, 9H).

The synthetic route of 110-70-3 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; F. HOFFMANN-LA ROCHE AG; HOFFMANN-LA ROCHE INC.; GAO, Lu; LIANG, Chungen; YUN, Hongying; ZHENG, Xiufang; WANG, Jianping; MIAO, Kun; ZHANG, Bo; (157 pag.)WO2018/41763; (2018); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Some tips on 33527-91-2

As the paragraph descriping shows that 33527-91-2 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.33527-91-2,Tris[2-(dimethylamino)ethyl]amine,as a common compound, the synthetic route is as follows.

To a solution of tris(2-dimethylaminoethyl)amine (0.426 g, 1.85mmol) in acetonitrile (4 mL) was added 1-bromodecane (1.27 g, 5.73 mmol). Theresulting mixture was heated at reflux with stirring for 18 hours. After cooling, and the addition of hexanes (5 mL), a white solid precipitated, which was filtered with a Buchner funnel, transferring with a cold hexanes/acetone mixture (15 mL, 1:1). The solid was rinsed with a cold hexanes/acetone mixture (2O mL, 1:1), resulting in T10 10,10,10 (1.16 g, 70%) as a white powder; mp=223-248 C; ?H NMR (300 MHz,CDC13) oe 4.11-4.02 (m, 6H), 3.62-3.53 (m, 6H), 3.41-3.27 (m, 24H), 1.72-1.62 (m, 6H), 1.38-1.14 (m, 42H), 0.85-0.78 (m, 9H); ?3C NMR (75 MHz, CD3OD) oe 65.4,61.1, 50.2, 46.9, 31.6, 29.2, 29.0, 28.9, 26.1, 22.4, 22.3, 13.0; high resolution mass spectrum (ESI) m/z 217.9095 ([Mj3 calculated for [C42H93N4j3: 217.9128). See alsoYoshimura et al., 2012, Langmuir 28:9322-9331. ?H and ?3C NMR spectra of compound T-10,10,10 can be found in Figure 50.

As the paragraph descriping shows that 33527-91-2 is playing an increasingly important role.

Reference£º
Patent; TEMPLE UNIVERSITY-OF THE COMMONWEALTH SYSTEM OF HIGHER EDUCATION; VILLANOVA UNIVERSITY; WUEST, William, M.; MINBIOLE, Kevin, P.C.; BARBAY, Deanna, L.; (227 pag.)WO2016/172436; (2016); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Simple exploration of 110-70-3

As the paragraph descriping shows that 110-70-3 is playing an increasingly important role.

110-70-3, N1,N2-Dimethylethane-1,2-diamine is a chiral-nitrogen-ligands compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

The ligand L1 was synthesized via previously reported procedure[23]. A solution of potassium carbonate (2.55 g, 18.45 mmol)in 10 mL water was dropwise added to the aqueous solution of 2-(chloromethyl)-pyridine hydrochloride (1.5 g, 9.15 mmol in10 mL). After about 30 min. of stirring at room temperature, thereaction mixture was extracted with dichloromethane(3 20 mL). The combined organic extracts were dried over anhydroussodium sulfate. The solution was filtered and the solvent wasremoved under vacuum. The resulted residue was then dissolvedin dichloromethane (10 mL). The dichloromethane solution of 2-chloromethyl-pyridine was added dropwise to a solution of N,N0-dimethylethylenediamine (0.471 mL, 5.34 mmol) in dichloromethane(15 mL). After this addition, 10 mL of aqueous sodiumhydroxide (1 M) was added slowly and the reaction mixture wasstirred for next 60 h at room temperature. After stirring was finished,another fraction of sodium hydroxide (10 mL, 1 M) wasadded rapidly. The reaction mixture was extracted with dichloromethane(3 25 mL) and combined organic portion was dried overanhydrous sodium sulfate. Evaporation of solvent led to isolationof the ligand L1 as a dark orange oil. (1.13 g, Yield 79%) 1H NMR(500 MHz, Methanol-d4) d 7.27 (m, 2H, pyridine ring), 7.50 (d,2H, pyridine ring), 7.76 (m, 2H, pyridine ring), 8.45 (d, 2H, pyridinering), 3.68 (s, 4H, -N-CH2-Py), 2.63 (s, 4H, -CH2-CH2-), 2.26 (s, 6H,N-CH3). IR (cm1): 2945, 2789, 1589, 1569, 1472, 1432, 1360,1304, 1146, 1090, 1031, 994, 635, 614, 418.

As the paragraph descriping shows that 110-70-3 is playing an increasingly important role.

Reference£º
Article; Singh, Nirupama; Niklas, Jens; Poluektov, Oleg; Van Heuvelen, Katherine M.; Mukherjee, Anusree; Inorganica Chimica Acta; vol. 455; (2017); p. 221 – 230;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Downstream synthetic route of 31886-58-5

The synthetic route of 31886-58-5 has been constantly updated, and we look forward to future research findings.

31886-58-5, (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine is a chiral-nitrogen-ligands compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

15.4 ml of a cyclohexane solution of s-butyllithium (1.3 M, 22 mmol) are added to a solution of 5.14 g (20 mmol) of (R)-N, N-dimethyl-1 -ferrocenylethylamine [(R)-ugi- amine] in 30 ml of t-butyl methyl ether (TBME) at <20C over a period of 10 minutes. The mixture is then heated to 00C while stirring and maintained at this temperature for 1.5 hours. It is then cooled to <60C and 2.47 ml (20 mmol) of dichlororopropyl- phosphine are added over a period of 10 mintues. After stirring at -78C for30 minutes, the mixture is allowed to warm slowly to room temperature and is stirred at this temperature for 1.5 hours. The synthetic route of 31886-58-5 has been constantly updated, and we look forward to future research findings. Reference£º
Patent; SOLVIAS AG; WO2008/55942; (2008); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Downstream synthetic route of 110-70-3

The synthetic route of 110-70-3 has been constantly updated, and we look forward to future research findings.

110-70-3, N1,N2-Dimethylethane-1,2-diamine is a chiral-nitrogen-ligands compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

2-(2-methoxyphenyl)-1,3-dimethylimidazolidine. A solution of o-anisaldehyde (9.0 g, 66 mmol) and N,N’-dimethylethylenediamine (7.9 mL, 73 mmol) in ethanol (180 mL) was stirred at r.t. for overnight. MgSO4 (30 g) was added and the mixture was stirred for 20 min. The reaction mixture was filtered and washed with ether. The solvent was removed in vacuo to afford 2-(2-methoxyphenyl)-1,3-dimethylimidazolidine as a light yellow solid, 12 g, yield 88%. 1H NMR (500 MHz, CHLOROFORM-D) delta ppm 2.21 (s, 6H) 2.57-2.72 (m, 2H) 3.34 (d, J=2.75 Hz, 2H) 3.82 (s, 3H) 4.13 (s, 1H) 6.88 (d, J=8.24 Hz, 1H) 7.00 (t, J=7.48 Hz, 1H) 7.25-7.30 (m, 1H) 7.67 (d, J=7.63 Hz, 1H).

The synthetic route of 110-70-3 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; Bristol-Myers Squibb Company; US2007/270406; (2007); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis