Some tips on 33527-91-2

As the paragraph descriping shows that 33527-91-2 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.33527-91-2,Tris[2-(dimethylamino)ethyl]amine,as a common compound, the synthetic route is as follows.

LiBEt3H (1 mL, 1.0 M in THF, 1 mmol) and Me6TREN (0.26 mL,1 mmol) were added to 5 mL of hexane, precipitating a white powder.THF was slowly added dropwise with stirring until a homogeneoussolution was obtained (approx. 3 mL) Cooling of the solutionat 30 C yielded X-ray quality colorless crystals (225 mg, 67%).1H NMR (400.1 MHz, C6D6, 300 K): delta 2.06 (s, 18H, Me6TREN Me),1.86 (t, 6H, 3JHH = 4.95 Hz, Me6TREN CH2), 1.78 (t, 6H, 3JHH = 4.95 Hz,Me6TREN CH2), 1.54 (t, 9H, 3JHH = 7.43 Hz, BCH2CH3), 0.95 ppm(q, 6H, 3JHH = 7.43 Hz, BCH2CH3).13C NMR (100.6 MHz, C6D6, 300 K): delta 57.2 (Me6TREN CH2), 50.6(Me6TREN CH2), 45.7 (Me6TREN Me), 16.7 (m, 1JBC = 41.5 Hz,BCH2CH3), 14.2 ppm (BCH2CH3).7Li NMR (155.5 MHz, C6D6, 300 K): delta 0.18 ppm.11B NMR (128.3 MHz, C6D6, 300 K): delta 11.3 ppm (broad singlet).Elemental analysis for C18H46N4LiB: Calc.: C, 64.28; H, 13.79; N,16.66. Found: C, 64.24; H, 13.49; N, 16.75%.

As the paragraph descriping shows that 33527-91-2 is playing an increasingly important role.

Reference£º
Article; Kennedy, Alan R.; McLellan, Ross; McNeil, Greg J.; Mulvey, Robert E.; Robertson, Stuart D.; Polyhedron; vol. 103; (2016); p. 94 – 99;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Brief introduction of 119139-23-0

119139-23-0 3,4-Di(1H-indol-3-yl)-1H-pyrrole-2,5-dione 2399, achiral-nitrogen-ligands compound, is more and more widely used in various.

119139-23-0, 3,4-Di(1H-indol-3-yl)-1H-pyrrole-2,5-dione is a chiral-nitrogen-ligands compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

EXAMPLE 27 40 mg of a 60% suspension of sodium hydride in mineral oil was added to a solution of 327 mg of 3,4-bis-(3-indolyl)-1H-pyrrole-2,5-dione in 5 ml of DMF at 0 C. under nitrogen. After 0.5 hour the mixture was cooled to -20 C. and 108 mg of trimethylsilyl chloride were added. The mixture was allowed to warm to room temperature, then cooled to 0 C. and then a further 80 mg of sodium hydride were added thereto. After 0.5 hour at 0 C. 116 mg of propylene oxide were added and the mixture was stirred overnight. 5 ml of water were added and the mixture was extracted with dichloromethane. The organic phase was dried and evaporated. The residue was purified on silica gel with ethyl acetate/petroleum ether. Recrystallization from diethyl ether/petroleum ether gave 30 mg of 3,4-bis[1-(2-hydroxypropyl)-3-indolyl]-1H-pyrrole-2,5-dione, m.p. 133-135 C.

119139-23-0 3,4-Di(1H-indol-3-yl)-1H-pyrrole-2,5-dione 2399, achiral-nitrogen-ligands compound, is more and more widely used in various.

Reference£º
Patent; Hoffmann-La Roche Inc.; US5057614; (1991); A;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Analyzing the synthesis route of 31886-58-5

31886-58-5 (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine 16212257, achiral-nitrogen-ligands compound, is more and more widely used in various.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.31886-58-5,(R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine,as a common compound, the synthetic route is as follows.

(S)-Ugi-amine 1 (2.57 g, 10 mmol) was dissolved in 25 mL of diethyl ether, and n-butyllithium (8 mL, 2.5 mol/L) was added dropwise to the reaction system under nitrogen protection and ice salt bath cooling. After that, the temperature was slowly raised to room temperature, and the reaction was stirred for 3 hours. To the ice salt bath, chlorobis(3,5-di-t-butylphenyl)phosphine (8.90 g, 20 mmol) was added dropwise thereto, and after the completion of the dropwise addition, the mixture was slowly warmed to room temperature, and the reaction was stirred for 24 hours. The reaction was quenched with saturated sodium bicarbonate solution and extracted with dichloromethane. Dry over anhydrous sodium sulfate, Concentration and column chromatography gave product 7 (3.79 g, 57%).

31886-58-5 (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine 16212257, achiral-nitrogen-ligands compound, is more and more widely used in various.

Reference£º
Patent; Zhejiang University of Technology; Zhong Weihui; Ling Fei; Nian Sanfei; (14 pag.)CN108774271; (2018); A;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Downstream synthetic route of 110-70-3

The synthetic route of 110-70-3 has been constantly updated, and we look forward to future research findings.

110-70-3, N1,N2-Dimethylethane-1,2-diamine is a chiral-nitrogen-ligands compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

The ligand BPMEN was synthesized via a previouslyreported procedure (Singh et al. 2017). A solution of potassiumcarbonate (5.1 g, 37 mmol) in 15 mL water was dropwiseadded to the aqueous solution of 2-(chloromethyl)-pyridine hydrochloride (3 g, 18.3 mmol in 10 mL). Afterabout 30 min of stirring at room temperature, the reactionmixture was extracted with dichloromethane (3 ¡Á 20 mL).The combined organic extracts were dried over anhydroussodium sulfate. The solution was filtered, and the solventwas removed under vacuum. The resulted residue was thendissolved in dichloromethane (10 mL). The above solutionwas added dropwise to a solution of N,N?-dimethylethylenediamine(0.942 mL, 8.75 mmol) in dichloromethane(25 mL). After this addition, 20 mL of aqueous sodiumhydroxide (1 M) was added slowly and the reaction mixturewas stirred for next 60 h at room temperature. After stirringwas finished, another fraction of sodium hydroxide (20 mL,1 M) was added rapidly. The reaction mixture was extractedwith dichloromethane (3 ¡Á 50 mL) and the combined organicportion was dried over anhydrous sodium sulfate. Evaporationof solvent led to isolation of the ligand BPMEN as adark orange oil. (2.1 g, Yield – 89%) 1H NMR (500 MHz,Methanol-d4) delta 8.45 (d, 2H, pyridine ring), 7.76 (m, 2H, pyridinering), 7.52 (d, 2H, pyridine ring), 7.30 (m, 2H, pyridinering), 3.67 (s, 4H, -N-CH2-Py), 2.63 (s, 4H, -CH2-CH2-),2.26 (s, 6H, N-CH3). ESI-MS+: [BPMEN + H]+ = 271.15 m/z+ (experimental) 271.19 m/z+ (theoretical).

The synthetic route of 110-70-3 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Botcha, Niharika Krishna; Gutha, Rithvik R.; Sadeghi, Seyed M.; Mukherjee, Anusree; Photosynthesis Research; vol. 143; 2; (2020); p. 143 – 153;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Simple exploration of 110-70-3

As the paragraph descriping shows that 110-70-3 is playing an increasingly important role.

110-70-3, N1,N2-Dimethylethane-1,2-diamine is a chiral-nitrogen-ligands compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Add in a 100mL single-mouth bottleN1,N2-dimethylethyl-1,2-diamine (4g, 45mmol), cooled to about 0 C in an ice bath,Then (Boc) 2O (5 g, 23 mmol) in DCM (20 mL)The temperature was raised to 25 C and the reaction was stirred for 4 h.Concentrated under reduced pressure, a saturated sodium carbonate solution was added to the residue, and extracted three times with ethyl acetate (30 mL¡Á3).The organic phase was combined, washed three times with saturated brine (20 mL¡Á3) and dried over anhydrous sodiumThe mixture was suction filtered under reduced pressure, and the filtrate was evaporated.The crude product was purified by column chromatography eluting with EtOAc EtOAcConcentration under reduced pressure gave 2.1 g of a yellow oil.

As the paragraph descriping shows that 110-70-3 is playing an increasingly important role.

Reference£º
Patent; Beijing Purunao Bio-technology Co., Ltd.; Zhang Peilong; Shi Hepeng; Lan Wenli; Song Zhitao; (250 pag.)CN108707139; (2018); A;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Brief introduction of 33527-91-2

33527-91-2 Tris[2-(dimethylamino)ethyl]amine 263094, achiral-nitrogen-ligands compound, is more and more widely used in various.

33527-91-2, Tris[2-(dimethylamino)ethyl]amine is a chiral-nitrogen-ligands compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

General procedure: The copper complex Cu5-1 was dissolved in water, and an excessive amount of an aqueous solution of saturated sodium tetrafluoroborate (manufactured by Wako Pure Chemical Industries, Ltd.) was added while stirring. A precipitated solid was collected by filtering and a copper complex Cu5-72 was obtained.

33527-91-2 Tris[2-(dimethylamino)ethyl]amine 263094, achiral-nitrogen-ligands compound, is more and more widely used in various.

Reference£º
Patent; FUJIFILM Corporation; Sasaki, Kouitsu; Kawashima, Takashi; Hitomi, Seiichi; Shiraishi, Yasuharu; US10215898; (2019); B2;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Analyzing the synthesis route of 33527-91-2

33527-91-2 Tris[2-(dimethylamino)ethyl]amine 263094, achiral-nitrogen-ligands compound, is more and more widely used in various.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.33527-91-2,Tris[2-(dimethylamino)ethyl]amine,as a common compound, the synthetic route is as follows.

LiBH4 (22 mg, 1 mmol) and Me6TREN (0.52 mL, 2 mmol) wereadded to 5 mL of THF. This was heated to reflux for 1 h at whichpoint the heat and stirrer were turned off. Slow cooling of the solutionyielded X-ray quality colorless crystals (40 mg, 16%).1H NMR (400.1 MHz, C6D6, 300 K): delta 2.11 (s, 18H, Me6TREN Me),1.94, 1.90 (overlapping br s, 12H, Me6TREN CH2), 0.59 ppm(quartet/septet, 4H, BH4, 1J10BH = 27.5 Hz, 1J11BH = 81.5 Hz).13C NMR (100.6 MHz, C6D6, 300 K): delta 57.0 (CH2), 51.2 (CH2),45.7 ppm (Me).7Li NMR (155.5 MHz, C6D6, 300 K): delta 0.29 ppm.11B NMR (128.3 MHz, C6D6, 300 K): delta 39.5 ppm (quin,1JBH = 81.2 Hz).Elemental analysis for C12H34N4LiB: Calc.: C, 57.15; H, 13.59; N,22.22. Found: C, 57.16; H, 13.48; N, 22.59%.

33527-91-2 Tris[2-(dimethylamino)ethyl]amine 263094, achiral-nitrogen-ligands compound, is more and more widely used in various.

Reference£º
Article; Kennedy, Alan R.; McLellan, Ross; McNeil, Greg J.; Mulvey, Robert E.; Robertson, Stuart D.; Polyhedron; vol. 103; (2016); p. 94 – 99;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Some tips on 31886-58-5

As the paragraph descriping shows that 31886-58-5 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.31886-58-5,(R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine,as a common compound, the synthetic route is as follows.

(1) Raw material storage tanks 1,4 are respectively methyl tert-butyl ether solution of N,N-dimethyl-(R)-1-[(S)-ferrocenyl]ethylamine (mass fraction 15%) And n-hexane solution of n-butyllithium (2.7M), methyl t-butyl group of N,N-dimethyl-(R)-1-[(S)-ferrocenyl]ethylamine was controlled by a metering pump the flow rate of the ether solution was 50 mL/min, the flow rate of the n-hexane solution of n-butyllithium was 14 mL/min, and the thermostatic module injected into the microchannel reactor was thermostated at 25 C; after constant temperature treatment, the first mixing module of the microchannel reactor was introduced. The reaction was carried out at a reaction temperature of 25 C and a residence time of 10.7 s.(2) reacting the effluent of the first mixing module with diphenylphosphine chloride in a second mixing module, controlling the flow rate of diphenylphosphonium chloride to 7 mL/min by a metering pump, and the reaction temperature is 35 C, and residence time 9.8s.(3) The effluent of the microchannel reactor was acidified to neutral with concentrated hydrochloric acid, extracted with ethyl acetate, dried over anhydrous sodium sulfate and evaporated to give a brown solid N,N-dimethyl-(R)-1- [(S)-2-(diphenylphosphino)ferrocenyl]ethylamine crude,Recrystallization from ethanol gave a pale yellow solid N,N-dimethyl-(R)-1-[(S)-2-(diphenylphosphino)ferrocenyl]ethylamine, N,N-dimethyl The mass ratio of the crude -(R)-1-[(S)-2-(diphenylphosphino)ferrocenyl]ethylamine to ethanol was 1:5; the yield was 82.4%.

As the paragraph descriping shows that 31886-58-5 is playing an increasingly important role.

Reference£º
Patent; Xi’an Modern Chemical Institute; Yang Cuifeng; Chen Tao; Xu Zegang; Mao Mingzhen; Zhang Xiaoguang; Ning Binke; Su Tianduo; Li Bingbo; Wang Yuemei; Wei Tianqi; Zhang Yuanyuan; (7 pag.)CN108456235; (2018); A;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Brief introduction of 31886-58-5

31886-58-5 (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine 16212257, achiral-nitrogen-ligands compound, is more and more widely used in various.

31886-58-5, (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine is a chiral-nitrogen-ligands compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

15.4 ml of a cyclohexane solution of s-butyllithium (1.3 M, 22 mmol) are added to a solution of 5.14 g (20 mmol) of (R)-N, N-dimethyl-1 -ferrocenylethylamine [(R)-ugi- amine] in 30 ml of t-butyl methyl ether (TBME) at <20C over a period of 10 minutes. The mixture is then heated to 00C while stirring and maintained at this temperature for 1.5 hours. It is then cooled to <60C and 3.0 ml (20 mmol) of dichlorocyclohexyl- phosphine are added over a period of 10 minutes. After stirring at -78C for30 minutes, the mixture is allowed to warm slowly to room temperature and is stirred at this temperature for 1.5 hours. 31886-58-5 (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine 16212257, achiral-nitrogen-ligands compound, is more and more widely used in various. Reference£º
Patent; SOLVIAS AG; WO2008/55942; (2008); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Brief introduction of 31886-58-5

31886-58-5 (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine 16212257, achiral-nitrogen-ligands compound, is more and more widely used in various.

31886-58-5, (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine is a chiral-nitrogen-ligands compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

(S)-Ugi-amine 1 (2.57 g, 10 mmol) was dissolved in 25 mL of diethyl ether, and n-butyllithium (8 mL, 2.5 mol/L) was added dropwise to the reaction system under nitrogen protection and ice salt bath cooling. After that, the temperature was slowly raised to room temperature, and the reaction was stirred for 3 hours. Under ice cooling, chlorobis(3,5-dimethylphenyl)phosphine (5.53 g, 20 mmol) was added dropwise thereto, and after the completion of the dropwise addition, the mixture was slowly warmed to room temperature, and the reaction was stirred for 24 hours. The reaction was quenched with saturated sodium bicarbonate solution and extracted with dichloromethane. Dry over anhydrous sodium sulfate, Concentration and column chromatography gave the product 10 (3.03 g, 61%).

31886-58-5 (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine 16212257, achiral-nitrogen-ligands compound, is more and more widely used in various.

Reference£º
Patent; Zhejiang University of Technology; Zhong Weihui; Ling Fei; Nian Sanfei; (14 pag.)CN108774271; (2018); A;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis