Analyzing the synthesis route of 110-70-3

With the synthetic route has been constantly updated, we look forward to future research findings about N1,N2-Dimethylethane-1,2-diamine,belong chiral-nitrogen-ligands compound

As a common heterocyclic compound, it belong chiral-nitrogen-ligands compound,N1,N2-Dimethylethane-1,2-diamine,110-70-3,Molecular formula: C4H12N2,mainly used in chemical industry, its synthesis route is as follows.,110-70-3

A solution of N,N?-dimethylethylenediamine (1.72g, 20mmol) in dry tetrahydrofuran (60mL) was treated with 2-chloromethylpyridine hydrochloride (6.604g, 40mmol) and triethylamine (8.093g, 80mmol) and the mixture was stirred under reflux for 18h. The resulting mixture was cooled to in ice and the triethylamine hydrobromide was removed by filtration. The filtrate was then treated with 10mL 15% NaOH solution and extracted with CH2Cl2 (3¡Á40mL). The combined extracts were dried over anhydrous MgSO4. Removal of the solvent with rotary evaporator yielded dark brown oil which was chromatographed on alumina and eluted with 95/5 (v/v) mixture of ethyl acetate/MeOH (Rf=0.81). The purified ligand was obtained as yellow viscous oil (yield: 4.2g, 79%). Selected IR bands (cm-1): nu(C-H) 3064 (w), 2949 (m), 2802 (m); pyridyl groups: 1592 (s), 1577 (m), 1474 (m), 1435 (s). 1H NMR: 8.43 (m, 2H), 7.70 (m, 2H), 7.37 (m, 2H), 7.72 (m, 2H), 3.58 (s, 4H), 2.51 (s, 4H), 2.14 (s, 6H); 13C NMR: 159.74 (2-py), 149.06 (6-py), 136.78 (4-py), 123.01 (3-py), 122.42 (5-py), 63.95 (N-CH2-py), 35.40 (-CH2-CH2-N), 42.94 (CH3-N), 40.60 (CH3-N).

With the synthetic route has been constantly updated, we look forward to future research findings about N1,N2-Dimethylethane-1,2-diamine,belong chiral-nitrogen-ligands compound

Reference£º
Article; Mautner, Franz A.; Koikawa, Masayuki; Mikuriya, Masahiro; Harrelson, Emily V.; Massoud, Salah S.; Polyhedron; vol. 59; (2013); p. 17 – 22;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Analyzing the synthesis route of 110-70-3

With the synthetic route has been constantly updated, we look forward to future research findings about N1,N2-Dimethylethane-1,2-diamine,belong chiral-nitrogen-ligands compound

As a common heterocyclic compound, it belong chiral-nitrogen-ligands compound,N1,N2-Dimethylethane-1,2-diamine,110-70-3,Molecular formula: C4H12N2,mainly used in chemical industry, its synthesis route is as follows.,110-70-3

The ligand 345BPMEN was synthesized by modifying thepreviously reported procedure (Singh et al. 2017). To a solutionof 2-chloromethyl-4-methoxy-3,5-dimethylpyridinehydrochloride 2.032 g (9.15 mmol) in 10 mL of water, asolution of potassium carbonate (2.55 g, (18.45 mmol) inwater (10 mL) was added dropwise. After potassium carbonateaddition, very thick white ppts were formed and solutionsolidified. Additional amount of water (50 mL) was addedinto the mixture. After water addition, the reaction mixturewas stirred at room temperature for next 30 min followed bysolvent extraction with dichloromethane (3 ¡Á 20 mL). Thecombined dichloromethane layer was treated with anhydroussodium sulfate. The solution was filtered, and the solventwas removed by rotatory evaporation. The collected light brown oil was dissolved in dichloromethane (10 mL).The above solution was added dropwise to a solution ofN,N?-dimethylethylenediamine 0.493 mL (4.58 mmol) indichloromethane (15 mL). Aqueous solution of 1 M sodiumhydroxide (10 mL) was slowly added and solution wasstirred for additional 60 h at room temperature. After 60 hof stirring was the rapid addition of a second fraction ofaqueous 1 M sodium hydroxide (10 mL, 10 mmol), the productwas extracted with dichloromethane (3 ¡Á 25 mL). Thecombined organic layers were dried over anhydrous sodiumsulfate and filtered. Subsequently, the excess solvent wasevaporated by vacuum to afford brown color viscous oil(1.71 g, Yield 97%). 1H NMR (500 MHz, Methanol-d4) delta8.08 (s, 2H, pyridine ring), 3.76 (s, 6H, -O-CH3-Py), 3.57(s, 4H, -CH2-CH2-Py), 2.56 (s, 4H, -CH2-CH2-), 2.28 (d,6H, CH3-Py), 2.24 (d, 6H, CH3-Py), 2.16 (s, 6H, -N-CH3).ESI-MS+: [345BPMEN + H]+ = 387.32 m/z+ (experimental)387.27 m/z+ (theoretical).

With the synthetic route has been constantly updated, we look forward to future research findings about N1,N2-Dimethylethane-1,2-diamine,belong chiral-nitrogen-ligands compound

Reference£º
Article; Botcha, Niharika Krishna; Gutha, Rithvik R.; Sadeghi, Seyed M.; Mukherjee, Anusree; Photosynthesis Research; vol. 143; 2; (2020); p. 143 – 153;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Simple exploration of 119139-23-0

As the paragraph descriping shows that 119139-23-0 is playing an increasingly important role.

119139-23-0, 3,4-Di(1H-indol-3-yl)-1H-pyrrole-2,5-dione is a chiral-nitrogen-ligands compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

EXAMPLE 13 20 ml of a 1M solution of LiAlH4 in diethyl ether was added to a solution of 1.0 g of 3,4-bis(3-indolyl)-1H-pyrrole-2,5-dione in 140 ml of THF. The mixture was stirred for 18 hours under nitrogen. The mixture was cooled to 0 C., quenched with 50 ml of water, then acidified to pH 2 with 2M hydrochloric acid and extracted with ethyl acetate. The organic extracts were washed with saturated sodium bicarbonate solution, dried and evaporated. The residue was purified on silica gel with 5-10% methanol in dichloromethane. The first product eluted was triturated with ethyl acetate/hexane to give 175 mg of 3,4-bis(3-indolyl)-3-pyrrolin-2-one, m.p. 290-293 C. (decomposition). The second product eluted was crystallized from ethyl acetate/chloroform to give 490 mg of 5-hydroxy-3,4-bis(3-indolyl)-3-pyrrolin-2-one, m.p. above 250 C. (decomposition).

As the paragraph descriping shows that 119139-23-0 is playing an increasingly important role.

Reference£º
Patent; Hoffmann-La Roche Inc.; US5057614; (1991); A;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Some tips on 119139-23-0

As the paragraph descriping shows that 119139-23-0 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.119139-23-0,3,4-Di(1H-indol-3-yl)-1H-pyrrole-2,5-dione,as a common compound, the synthetic route is as follows.

EXAMPLE 10 1.4 ml of acetaldehyde dimethyl acetal and 10 mg of p-toluenesulphonic acid were added to a solution of 250 mg of 3,4-bis(3-indolyl)-1H-pyrrole-2,5-dione in 40 ml of chloroform. The resulting mixture was heated to reflux for 18 hours under nitrogen. The obtained solution was evaporated and the residue was purified on silica gel with ethyl acetate/petroleum ether (1:2). Recrystallization from chloroform/hexane gave 165 mg of 3,4-bis[1-(1-methoxyethyl)-3-indolyl]-1H-pyrrole-2,5-dione, m.p. 222-224 C.

As the paragraph descriping shows that 119139-23-0 is playing an increasingly important role.

Reference£º
Patent; Hoffmann-La Roche Inc.; US5057614; (1991); A;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Simple exploration of 31886-58-5

As the paragraph descriping shows that 31886-58-5 is playing an increasingly important role.

31886-58-5, (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine is a chiral-nitrogen-ligands compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

The compound having the structure shown in formula (VI) of FIG. 4 was made using the scheme set forth in FIG. 2. Referring to FIG. 2, alpha-Dimethylaminoethylferrocene (as Compound 1) (0.52 g, 2.03 mmol) was dissolved in diethyl ether (8.3 ml). Next, sec-butyl lithium (2.0 ml, 1.4 M solution, 1.36 eq) was added and the mixture was stirred at room temperature overnight. Chlorobis[3,5-bis(trifluoromethyl)phenyl]phosphine (1.0 g, 2.03 mmol, 1.0 eq) in diethyl ether (1.7 ml) was added dropwise and the solution was refluxed for 5 hours. An aqueous solution saturated with sodium bicarbonate (15 ml) was added. The layers were separated and the aqueous layer washed with diethyl ether (2¡Á6 ml). The separated organic layer was combined with the diethyl ether washings and dried over magnesium sulfate. The solution was concentrated under vacuum and purified by column chromatography on alumina using 30:1 hexane:ethyl acetate as eluent. This resulted in an orange oil containing Compound 2 (0.60 g, 0.84 mmol, 41%).

As the paragraph descriping shows that 31886-58-5 is playing an increasingly important role.

Reference£º
Patent; Eastman Chemical Company; How, Rebecca; Clarke, Matt; Hembre, Robert Thomas; Ponasik, James A.; Tolleson, Ginette S.; (17 pag.)US9308527; (2016); B2;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Application of Cinnolin-4-ol

With the rapid development of chemical substances, we look forward to future research findings about 33527-91-2

The chiral-nitrogen-ligands compound, cas is 33527-91-2 name is Tris[2-(dimethylamino)ethyl]amine, mainly used in chemical industry, its synthesis route is as follows.

General procedure: The copper complex Cu5-1 was dissolved in water, and an excessive amount of an aqueous solution of saturated sodium tetrafluoroborate (manufactured by Wako Pure Chemical Industries, Ltd.) was added while stirring. A precipitated solid was collected by filtering and a copper complex Cu5-72 was obtained.

With the rapid development of chemical substances, we look forward to future research findings about 33527-91-2

Reference£º
Patent; FUJIFILM Corporation; Sasaki, Kouitsu; Kawashima, Takashi; Hitomi, Seiichi; Shiraishi, Yasuharu; US10215898; (2019); B2;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Analyzing the synthesis route of 110-70-3

110-70-3 N1,N2-Dimethylethane-1,2-diamine 8070, achiral-nitrogen-ligands compound, is more and more widely used in various.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.110-70-3,N1,N2-Dimethylethane-1,2-diamine,as a common compound, the synthetic route is as follows.

Step. A: N-Methyl-N’-methyl-N’-t-butoxycarbonylethylenediamine A solution of 1 gram (4.58 mmole) of di-t-butyl-dicarbonate in 8 mL of CH2 Cl2 at 0 C. was treated with 0.98 mL (9.16 mmole) of N-methyl-N’-methylethylenediamine. After 20 min the cooling bath was removed and the mixture allowed to warm to 22 C. After 4 hours the mixture was concentrated in vacuo. The residue was purified by flash chromatography on 68 g silica gel eluding with 1 liter of 100:9:0.3 CH2 Cl2:MeOH: ammonia water, then 500 mL of 100:11:0.3 CH2 Cl2:MeOH: ammonia water to give 190 mg (22%) of a volatile oil.

110-70-3 N1,N2-Dimethylethane-1,2-diamine 8070, achiral-nitrogen-ligands compound, is more and more widely used in various.

Reference£º
Patent; Merck & Co., Inc.; US5344830; (1994); A;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Application of (R)-4-(tert-Butoxycarbonyl)thiomorpholine-3-carboxylic acid

As the rapid development of chemical substances, we look forward to future research findings about 119139-23-0

The chiral-nitrogen-ligands compound, cas is 119139-23-0 name is 3,4-Di(1H-indol-3-yl)-1H-pyrrole-2,5-dione, mainly used in chemical industry, its synthesis route is as follows.

General procedure: A reaction flask equipped with a magnetic stirrer was charged with a solution of 3, 4-bisindolylmaleimide (2.1 g, 6.4 mmol) in 100 mL of acetone. Potassium hydroxide (0.40 g, 7.1 mmol) was added to the solution at 0 C and stirred for 0.5 h. Iodomethane (1.6 g, 0.011 mol) or 1-bromooctane (2.4 g, 0.012 mol) was added to the reaction mixture for 3, 4-bisindolyl-1-N-methylmaleimide or 3, 4-bisindolyl-1-N-(n-octyl)maleimide, respectively. The reaction mixture was warmed to room temperature and stirred for 1 h (iodomethane) or 24 h (1-bromooctane). The reaction mixture was concentrated and then dissolved in a mixture of ethyl acetate and water. The organic phase was separated, washed with water once and brine once, dried over anhydrous sodium sulfate. The product was purified by flash chromatography with petroleum ether, ethyl acetate and dichloromethane (V/V = 3:1:2) as eluent.

As the rapid development of chemical substances, we look forward to future research findings about 119139-23-0

Reference£º
Article; Zhang, Qianfeng; Chang, Guanjun; Zhang, Lin; Chinese Chemical Letters; vol. 29; 3; (2018); p. 513 – 516;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Application of Isothiazole-4-carboxylic acid

As the rapid development of chemical substances, we look forward to future research findings about 33527-91-2

The chiral-nitrogen-ligands compound, cas is 33527-91-2 name is Tris[2-(dimethylamino)ethyl]amine, mainly used in chemical industry, its synthesis route is as follows.

General procedure: The copper complex Cu5-1 was dissolved in water, and an excessive amount of an aqueous solution of saturated sodium tetrafluoroborate (manufactured by Wako Pure Chemical Industries, Ltd.) was added while stirring. A precipitated solid was collected by filtering and a copper complex Cu5-72 was obtained.

As the rapid development of chemical substances, we look forward to future research findings about 33527-91-2

Reference£º
Patent; FUJIFILM Corporation; Sasaki, Kouitsu; Kawashima, Takashi; Hitomi, Seiichi; Shiraishi, Yasuharu; US10215898; (2019); B2;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Application of 1,1′-Dibromoferrocene

As the rapid development of chemical substances, we look forward to future research findings about 110-70-3

The chiral-nitrogen-ligands compound, name is N1,N2-Dimethylethane-1,2-diamine,cas is 110-70-3, mainly used in chemical industry, its synthesis route is as follows.

Step 1 : To a solution of N,N’-dimethylethylenediamine (300 mg) in DMF (2.0 mL) was added K2C03 ( 1.0 g) and compound B (466 mg). The mixture was heated at 80C for 3h. Solvent was evaporated and the residue was extracted with DCM and then purified by a prep-TLC plate(10%MeOH/DCM with 1% NH3 in methanol) to give product as a yellow solid (400 mg, yield 75%).

As the rapid development of chemical substances, we look forward to future research findings about 110-70-3

Reference£º
Patent; ARIAD PHARMACEUTICALS, INC.; DALGARNO, David, C.; HUANG, Wei-sheng; SHAKESPEARE, William, C.; WANG, Yihan; ZHU, Xiaotian; WO2012/151561; (2012); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis