The important role of 33527-91-2

With the complex challenges of chemical substances, we look forward to future research findings about Tris[2-(dimethylamino)ethyl]amine

Name is Tris[2-(dimethylamino)ethyl]amine, as a common heterocyclic compound, it belongs to chiral-nitrogen-ligands compound, and cas is 33527-91-2, its synthesis route is as follows.,33527-91-2

To a solution of tris(2-dimethylaminoethyl)amine (0.403 g, 1.75 mmol) in acetonitrile (4 mL) was added 1-bromohexadecane (1.63 g, 5.35 mmol). The resulting mixture was heated at reflux with stirring for 18 hours, during which time awhite solid was observed. After cooling, and the addition of a cold hexanes/acetone mixture (15 mL, 1:1), to the reaction flask, the precipitate was filtered with a Buchner funnel, and rinsed with a cold hexanes/acetone mixture (2O mL, 1:1), resulting in T-16,16,16 (1.67 g, 84%) as a white powder; mp=229-258 C; ?H NMR (300 MI-Tz, CDC13) oe 4.11-4.02 (m, 6H), 3.64-3.55 (m, 6H), 3.45-3.37 (m, 6H), 3.35(s, 18H), 1.78-1.66 (m, 6H), 1.40-1.18 (m, 78H), 0.88-0.81 (m, 9H); high resolution mass spectrum (ESI) m/z 302.0073 ([Mj3 calculated for [C6oH,29N4j3: 302.0067). ?H spectmm of compound T-16,16,16 can be found in Figure 54.

With the complex challenges of chemical substances, we look forward to future research findings about Tris[2-(dimethylamino)ethyl]amine

Reference£º
Patent; TEMPLE UNIVERSITY-OF THE COMMONWEALTH SYSTEM OF HIGHER EDUCATION; VILLANOVA UNIVERSITY; WUEST, William, M.; MINBIOLE, Kevin, P.C.; BARBAY, Deanna, L.; (227 pag.)WO2016/172436; (2016); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

The important role of 31886-58-5

With the complex challenges of chemical substances, we look forward to future research findings about (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine

Name is (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, as a common heterocyclic compound, it belongs to chiral-nitrogen-ligands compound, and cas is 31886-58-5, its synthesis route is as follows.,31886-58-5

General procedure: 0C, N2,7 mL of tBuLi in n-hexane (1.6 mol/L, 11.2 mmol) was added dropwise with stirringCompound 1 (2.57 g, 10 mmol) in anhydrous ether (20 mL),After the addition, the mixture was naturally warmed to room temperature and stirred for 2 hours. Then cool down to -78C,The redistilled PCl3 (11.46 mmol, 1 mL) was slowly added dropwise, and the mixture was warmed to room temperature.The reaction was overnight. Then cool down to -78C again.A solution of R2MgBr (prepared from 30 mmol of R2Br and 0.8 g, 33.3 mmol of magnesium turnings in tetrahydrofuran) was slowly added dropwise using a constant pressure funnel. After the addition, slowly warm up the reaction overnight.Then 20 mL of saturated NH4Cl solution was added. The oil phase was extracted three times with 20 mL ether.After the oil phase was dried over anhydrous sodium sulfate, it was spin-dried, and the silica gel was subjected to a chromatography to obtain the target compound 2 .

With the complex challenges of chemical substances, we look forward to future research findings about (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine

Reference£º
Patent; Kaitelisi (Shenzhen) Technology Co., Ltd.; Zhang Xumu; Liang Zhiqin; (17 pag.)CN107722068; (2018); A;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

The important role of 110-70-3

With the complex challenges of chemical substances, we look forward to future research findings about N1,N2-Dimethylethane-1,2-diamine

Name is N1,N2-Dimethylethane-1,2-diamine, as a common heterocyclic compound, it belongs to chiral-nitrogen-ligands compound, and cas is 110-70-3, its synthesis route is as follows.,110-70-3

The ligand L1Q was synthesized via similar procedure mentionedabove [23]. To an aqueous solution of 2-(chloromethyl)-quinoline hydrochloride (2 g, 9.34 mmol), a solution of potassiumcarbonate (2.73 g, 18.66 mmol) in 10 mL water was added in dropwisemanner. The reaction mixture was stirred for 30 min at ambienttemperature. After stirring, the resulting solution wasextracted with dichloromethane (3 20 mL). The combinedorganic extracts were dried over anhydrous sodium sulfate andsolvent was evaporates under vacuum. The product 2-(chloromethyl)-quinoline was then dissolved in dichloromethane(10 mL) and was added dropwise to a solution of N,N0-dimethylethylenediamine (0.503 mL, 5.34 mmol) in 15 mL dichloromethane.After this addition, aqueous sodium hydroxide (10 mL,1 M) was added slowly. The reaction mixture was stirred for next60 h at room temperature, followed by rapid addition of anotherfraction of sodium hydroxide (10 mL, 10 mmol). The reaction mixturewas then extracted with dichloromethane (3 25 mL) andorganic portions were combined and dried over anhydrous sodiumsulfate. Volatile solvents were removed under vacuum to obtaincrude ligand L1Q as dark brown oil (1.68 g, Yield 85%). 1H NMR(500 MHz, Methanol-d4) d 7.57 (m, 2H, quinoline ring),7.63 (d,2H, quinoline ring), 7.73 (m, 2H, quinoline ring), 7.88 (d, 2H, quinolinering),7.98 (d, 2H, quinoline ring), 8.21 (d, 2H, quinoline ring),3.84 (s, 4H, -N-CH2-Quinoline), 2.71 (s, 4H, -CH2-CH2-), 2.32 (s,6H, -N-CH3). IR (cm1): 3384, 3056, 2946, 2800, 1617, 1598,1564, 1504, 1456, 1426, 1361, 1309, 1223, 1141, 1119, 1032,985, 951, 828, 784, 756, 619.

With the complex challenges of chemical substances, we look forward to future research findings about N1,N2-Dimethylethane-1,2-diamine

Reference£º
Article; Singh, Nirupama; Niklas, Jens; Poluektov, Oleg; Van Heuvelen, Katherine M.; Mukherjee, Anusree; Inorganica Chimica Acta; vol. 455; (2017); p. 221 – 230;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

The important role of 33527-91-2

With the complex challenges of chemical substances, we look forward to future research findings about Tris[2-(dimethylamino)ethyl]amine

Name is Tris[2-(dimethylamino)ethyl]amine, as a common heterocyclic compound, it belongs to chiral-nitrogen-ligands compound, and cas is 33527-91-2, its synthesis route is as follows.,33527-91-2

To a mixture of Cu(NO3)22.5H2O (0.504 g, 2.17 mmol) in MeOH(15.0 mL), was added tris[2-(dimethylamino)ethyl]amine (L4)(0.500 g, 2.17 mmol) and stirred at RT. The blue solution was evaporatedunder reduced pressure to afford a yellow solid. The solidwas dissolved again in MeOH and diffused with diethyl ether. Suitableblue block-shaped crystals were obtained in 2 days. Yield(0.921 g, 98%).

With the complex challenges of chemical substances, we look forward to future research findings about Tris[2-(dimethylamino)ethyl]amine

Reference£º
Article; Sivanesan, Dharmalingam; Seo, Bongkuk; Lim, Choong-Sun; Kim, Hyeon-Gook; Journal of Catalysis; vol. 382; (2020); p. 121 – 128;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Analyzing the synthesis route of 110-70-3

110-70-3 N1,N2-Dimethylethane-1,2-diamine 8070, achiral-nitrogen-ligands compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.110-70-3,N1,N2-Dimethylethane-1,2-diamine,as a common compound, the synthetic route is as follows.,110-70-3

A solution of di-tert-butyl dicarbonate (4.95 g, 22.69 mmol) in CH2Cl2 (240 mL) was added dropwise to a stirred solution of N,N?-dimethylethane-1,2-diamine (4 g, 45.38 mmol) in CH2Cl2 (80 mL) over a period of 20h. The resulting mixture was stirred at r.t. for 3h. The mixture was then washed sequentially with sat. Na2CO3 (2 x 100 mL), water (50 mL), and sat. brine (50 mL). The organic solution was dried (MgSO4) and concentrated in vacuo. Purification by FCC, eluting with 0-10% CH3OH in CH2Cl2 gave the title compound (2.177 g, 51%) as a pale yellow oil; 1H NMR: 1.40 (9H, s), 2.28 (3H, s), 2.57 (2H, t), 2.79 (3H, s), 3.20 (2H, t).

110-70-3 N1,N2-Dimethylethane-1,2-diamine 8070, achiral-nitrogen-ligands compound, is more and more widely used in various fields.

Reference£º
Patent; ASTRAZENECA AB; ASTRAZENECA UK LIMITED; BUTTERWORTH, Sam; FINLAY, Maurice, Raymond, Verschoyle; WARD, Richard, Andrew; KADAMBAR, Vasantha, Krishna; CHANDRASHEKAR, Reddy, C.; MURUGAN, Andiappan; REDFEARN, Heather, Marie; WO2013/14448; (2013); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Some tips on Tris[2-(dimethylamino)ethyl]amine

With the complex challenges of chemical substances, we look forward to future research findings about 33527-91-2,belong chiral-nitrogen-ligands compound

As a common heterocyclic compound, it belongs to chiral-nitrogen-ligands compound, name is Tris[2-(dimethylamino)ethyl]amine, and cas is 33527-91-2, its synthesis route is as follows.,33527-91-2

To a solution of tris(2-dimethylaminoethyl)amine (0.486 g, 2.11 mmol) in acetonitrile (4 mL) was added 1-bromoundecane (1.55 g, 6.57 mmol). The resulting mixture was heated at reflux with stirring for 19 hours. After cooling, and the addition of hexanes (5 mL), a white solid precipitated, which was filtered with aBuchner funnel, transferring with a cold hexanes/acetone mixture (15 mL, 1:1). The solid was rinsed with a cold hexanes/acetone mixture (2O mL, 1:1), resulting in T11,11,11 (1.62 g, 82%) as a white powder; mp=224-253 C; ?H NMR (300 MHz, CDC13) oe 4. 12-4.03 (m, 6H), 3.65-3.56 (m, 6H), 3.45-3.37 (m, 6H), 3.34 (s, 18H), 1.79-1.66 (m, 6H), 1.41-1.18 (m, 48H), 0.89-0.82 (m, 9H); ?3C NMR (75 MHz,CD3OD) oe 65.4, 61.1, 50.1, 46.9, 31.6, 29.3, 29.3, 29.2, 29.0, 28.9, 26.1, 22.4, 22.3,13.0; high resolution mass spectmm (ESI) m/z 231.9281 ([Mj3 calculated for [C45H99N4j3: 231.9284). ?H and ?3C NMR spectra of compound T-11,11,11 can be found in Figure 51.

With the complex challenges of chemical substances, we look forward to future research findings about 33527-91-2,belong chiral-nitrogen-ligands compound

Reference£º
Patent; TEMPLE UNIVERSITY-OF THE COMMONWEALTH SYSTEM OF HIGHER EDUCATION; VILLANOVA UNIVERSITY; WUEST, William, M.; MINBIOLE, Kevin, P.C.; BARBAY, Deanna, L.; (227 pag.)WO2016/172436; (2016); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Some tips on (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine

With the complex challenges of chemical substances, we look forward to future research findings about 31886-58-5,belong chiral-nitrogen-ligands compound

As a common heterocyclic compound, it belongs to chiral-nitrogen-ligands compound, name is (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, and cas is 31886-58-5, its synthesis route is as follows.,31886-58-5

To a degassed solution of (R)-1 (829 mg, 3.22 mmol) in THF (4.5 mL) at -78 C was added dropwise sec-BuLi (1.4 M in cyclohexane, 2.5 mL, 3.55 mmol). The resulting deep red solution was stirred for 1 h at -78 C and for 2 h at 0 C. A solution of ZnBr2 (1.3 M in THF, 3.2 mL, 4.19 mmol) was added and the reaction mixture was stirred for further 40 min at 0 C. A degassed solution of [Pd2(dba)3] (148 mg, 0.162 mmol) and tri-(2-furyl)phosphine (tfp) (299 mg, 1.29 mmol) in THF (6 mL) was prepared and stirred for 20 min at r.t. to give a dark green clear solution. To this catalyst solution were transferred a degassed solution of (R,SFc)-1-iodo-2-p-tolylsulfinylferrocene, (R,SFc)-2, (900 mg, 2.00 mmol) in THF (15 mL) and the freshly prepared ferrocenyl-zinc compound. The resulting red-brown solution was heated to reflux under argon at 75 C for 19 h. The reaction mixture was cooled to r.t., quenched with 5 M NaOH (6 mL), diluted with water and extracted with ethyl acetate (3 ¡Á 70 mL). The combined organic phases were washed with water (3 ¡Á 50 mL) and brine (2 ¡Á 50 mL) and dried over MgSO4. The mixture was filtered and the solvent was evaporated. The crude product was purified by column chromatography (silica, PE/EE/NEt3 = 10/10/1 ? 1/2/1). After a second chromatography (aluminium oxide, PE/EE/NEt3 = 1/1/1 ? 1/2/1) was the pure product obtained as an orange solid (yield: 55 mg, 5%). Single crystals suitable for X-ray structure determination were obtained from a solution of the product in EtOAc/PE by slow evaporation of the solvents. M.p.: 158-163 C. 1H NMR (600.1 MHz, CDCl3): delta 1.51 (d, J = 6.9 Hz, 3H, CH3CH), 1.72 (s, 6H, N(CH3)2), 2.42 (s, 3H, Ph-CH3), 3.59 (q, J = 6.9 Hz, 1H, CH3CH), 4.09 (m, 1H, H3?), 4.24 (s, 6H, Cp? + H3), 4.27 (s, 5H, Cp?), 4.39 (dd, J1 = J2 = 2.5 Hz, 1H, H4), 4.42 (dd, J1 = J2 = 2.5 Hz, 1H, H4?), 4.70 (m, 1H, H5?), 4.76 (m, 1H, H5), 7.31 (d, J = 8.0 Hz, 2H, Ph-meta), 7.67 (d, J = 8.0 Hz, 2H, Ph-ortho). 13C{1H} NMR (150.9 MHz, CDCl3): delta 18.9 (bs, CH3CH), 21.5 (Ph-CH3), 40.9 (2C, N(CH3)2), 55.5 (CH3CH), 66.9 (C4), 67.8 (2C, C3 + C3?), 68.8 (C4?), 69.8 (5C, Cp?), 70.7 (5C, Cp?), 71.8 (C5), 73.9 (C5?), 82.0 (C1), 88.6 (C1?/C2?), 89.5 (C2), 93.9 (C1?/C2?), 125.7 (2C, Ph-ortho), 129.4 (2C, Ph-meta), 141.0 (Ph-ipso), 141.4 (Ph para). HR-MS (ESI, MeOH/MeCN): m/z [M + H]+ calcd. 580.1060 for C31H34Fe2NOS; found: 580.1047. [alpha]lambda20 (nm): -739 (589), -843 (578), -1380 (546) (c 0.225, CHCl3).

With the complex challenges of chemical substances, we look forward to future research findings about 31886-58-5,belong chiral-nitrogen-ligands compound

Reference£º
Article; Gross, Manuela A.; Mereiter, Kurt; Wang, Yaping; Weissensteiner, Walter; Journal of Organometallic Chemistry; vol. 716; (2012); p. 32 – 38;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Some tips on 3,4-Di(1H-indol-3-yl)-1H-pyrrole-2,5-dione

With the complex challenges of chemical substances, we look forward to future research findings about 119139-23-0,belong chiral-nitrogen-ligands compound

As a common heterocyclic compound, it belongs to chiral-nitrogen-ligands compound, name is 3,4-Di(1H-indol-3-yl)-1H-pyrrole-2,5-dione, and cas is 119139-23-0, its synthesis route is as follows.,119139-23-0

Example 1 12,13-(2,3-dihydroxy-butan-1,4-yl)-6,7,12,13-tetrahydro-5-oxo-5H-indolo[2,3-a]pyrrolo[3,4-c]carbazole (Compound 14) Palladium dichloride (7.4 g, 41.6 mmoles) was added to a solution of acryrubin A Compound 1a (2.9 g, 8.86 mmol) (prepared as described in Faul M M, Winneroski L L and Krumrich C A, Journal of Organic Chemistry, 1998, 63, 6053-6058) in DMF (100 mL) at 90 C. The reaction temperature was kept at 90 C. for 1 hr. The mixture was cooled and conc. HCl (50 mL), then water (50 mL) was added. The mixture was poured over ice and the resulting precipitate was filtered off. The solids were washed with H2O and MeOH, then dissolved in THF (200 mL) and acetone (200 mL) and the remaining solids were filtered off. The solution was filtered through a plug of silica gel and the solvent was removed under vacuum. The resulting residue was diluted with MeOH, the solids were filtered and washed with MeOH then dried to provide acryflavin A Compound 1b (2 g, 70%) as a brown solid.

With the complex challenges of chemical substances, we look forward to future research findings about 119139-23-0,belong chiral-nitrogen-ligands compound

Reference£º
Patent; Wilson, Lawrence J.; Murray, William V.; Yang, Shyh-Ming; Yang, Cangming; Wang, Bingbing; US2007/249590; (2007); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Some tips on Tris[2-(dimethylamino)ethyl]amine

With the complex challenges of chemical substances, we look forward to future research findings about 33527-91-2,belong chiral-nitrogen-ligands compound

As a common heterocyclic compound, it belongs to chiral-nitrogen-ligands compound, name is Tris[2-(dimethylamino)ethyl]amine, and cas is 33527-91-2, its synthesis route is as follows.,33527-91-2

To a solution of tris(2-dimethylaminoethyl)amine (0.401 g, 1.74 mmol) in acetonitrile (4 mL) was added 1-bromododecane (1.34 g, 5.38 mmol). The resulting mixture was heated at reflux with stirring for 22 hours, during which time awhite solid was observed. After cooling, and the addition of a cold hexanes/acetone mixture (15 mL, 1:1), to the reaction flask, the precipitate was filtered with a Buchner funnel, and rinsed with a cold hexanes/acetone mixture (20 mL, 1:1), resulting in T-12,12,12 (1.39 g, 82%) as a white powder; mp=225-254 C; ?H NMR (300 JVII-Tz, CDC13) oe 4.11-4.03 (m, 6H), 3.63-3.55 (m, 6H), 3.39-3.32 (m, 6H), 3.30(s, 18H), 1.72-1.62 (m, 6H), 1.37-1.14 (m, 54H), 0.84-0.78 (m, 9H); ?3C NMR (75 MHz, CD3OD) 3 65.3, 61.0, 50.1, 46.8, 31.7, 29.4, 29.3, 29.3, 29.1, 29.0, 26.1, 22.4, 22.4, 13.1; high resolution mass spectrum (ESI) m/z 245.9435 ([Mj3 calculated for [C48H,o5N4j3: 245.9441). See also Yoshimura et al., 2012, Langmuir 28:9322-933 1. ?H and ?3C NMR spectra of compound T-12,12,12 can be found in Figure 52.

With the complex challenges of chemical substances, we look forward to future research findings about 33527-91-2,belong chiral-nitrogen-ligands compound

Reference£º
Patent; TEMPLE UNIVERSITY-OF THE COMMONWEALTH SYSTEM OF HIGHER EDUCATION; VILLANOVA UNIVERSITY; WUEST, William, M.; MINBIOLE, Kevin, P.C.; BARBAY, Deanna, L.; (227 pag.)WO2016/172436; (2016); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Some tips on N1,N2-Dimethylethane-1,2-diamine

With the complex challenges of chemical substances, we look forward to future research findings about 110-70-3,belong chiral-nitrogen-ligands compound

As a common heterocyclic compound, it belongs to chiral-nitrogen-ligands compound, name is N1,N2-Dimethylethane-1,2-diamine, and cas is 110-70-3, its synthesis route is as follows.,110-70-3

Step. A: N-Methyl-N’-methyl-N’-t-butoxycarbonylethylenediamine A solution of 1 gram (4.58 mmole) of di-t-butyl-dicarbonate in 8 mL of CH2 Cl2 at 0 C. was treated with 0.98 mL (9.16 mmole) of N-methyl-N’-methylethylenediamine. After 20 min the cooling bath was removed and the mixture allowed to warm to 22 C. After 4 hours the mixture was concentrated in vacuo. The residue was purified by flash chromatography on 68 g silica gel eluding with 1 liter of 100:9:0.3 CH2 Cl2:MeOH: ammonia water, then 500 mL of 100:11:0.3 CH2 Cl2:MeOH: ammonia water to give 190 mg (22%) of a volatile oil.

With the complex challenges of chemical substances, we look forward to future research findings about 110-70-3,belong chiral-nitrogen-ligands compound

Reference£º
Patent; Merck & Co., Inc.; US5344830; (1994); A;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis