Analyzing the synthesis route of 119139-23-0

119139-23-0, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,119139-23-0 ,3,4-Di(1H-indol-3-yl)-1H-pyrrole-2,5-dione, other downstream synthetic routes, hurry up and to see

It is a common heterocyclic compound, the chiral-nitrogen-ligands compound, 3,4-Di(1H-indol-3-yl)-1H-pyrrole-2,5-dione, cas is 119139-23-0 its synthesis route is as follows.

EXAMPLE 13 20 ml of a 1M solution of LiAlH4 in diethyl ether was added to a solution of 1.0 g of 3,4-bis(3-indolyl)-1H-pyrrole-2,5-dione in 140 ml of THF. The mixture was stirred for 18 hours under nitrogen. The mixture was cooled to 0 C., quenched with 50 ml of water, then acidified to pH 2 with 2M hydrochloric acid and extracted with ethyl acetate. The organic extracts were washed with saturated sodium bicarbonate solution, dried and evaporated. The residue was purified on silica gel with 5-10% methanol in dichloromethane. The first product eluted was triturated with ethyl acetate/hexane to give 175 mg of 3,4-bis(3-indolyl)-3-pyrrolin-2-one, m.p. 290-293 C. (decomposition). The second product eluted was crystallized from ethyl acetate/chloroform to give 490 mg of 5-hydroxy-3,4-bis(3-indolyl)-3-pyrrolin-2-one, m.p. above 250 C. (decomposition).

119139-23-0, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,119139-23-0 ,3,4-Di(1H-indol-3-yl)-1H-pyrrole-2,5-dione, other downstream synthetic routes, hurry up and to see

Reference£º
Patent; Hoffmann-La Roche Inc.; US5057614; (1991); A;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Share a compound : 110-70-3

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of N1,N2-Dimethylethane-1,2-diamine, 110-70-3

110-70-3, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. N1,N2-Dimethylethane-1,2-diamine, cas is 110-70-3,the chiral-nitrogen-ligands compound, it is a common compound, a new synthetic route is introduced below.

The above mentioned protocol was adapted for preparation ofligand L2. In a solution of 2-(chloromethyl)-3,4-dimethoxypyridinehydrochloride (2.09 g, 9.34 mmol) in 10 mL of water, a solution ofpotassium bicarbonate(2.73 g, 19.74 mmol) in water (10 mL) wasadded dropwise. The reaction mixture was stirred at room temperaturefor next 30 min. After stirring is done, solution was extractedwith dichloromethane (3 20 mL). The combined dichloromethanelayer was treated with anhydrous sodium sulfate. Thesolution was filtered and solvent was removed by rotatory evaporation.The collected light yellow oil was dissolved in dichloromethane(10 mL). The 2-(chloromethyl)-3,4-dimethoxypyridinesolution in dichloromethane was added dropwise to a solution of N,N0-dimethylethylenediamine (0.503 mL, 4.67 mmol) in dichloromethane(15 mL). In the next step aqueous 1 M sodium hydroxide(10 mL) was slowly added and solution was stirred for additional60 h at room temperature. After 60 h of stirring followed by therapid addition of a second fraction of aqueous 1 M sodium hydroxide(10 mL, 10 mmol), the product was extracted with dichloromethane(3 25 mL). The combined organic layers were driedover anhydrous sodium sulfate and filtered. Subsequently, theexcess solvent was evaporated by vacuum to afford yellow colorviscous oil (1.86 g, Yield 89%). 1H NMR (500 MHz, Methanol-d4) d8.14 (d, 2H, pyridine ring), 7.05 (d, 2H, pyridine ring), 3.95 (s,6H,-O-CH3-Py), 3.85 (s, 6H,-O-CH3-Py), 3.66 (s, 4H,-N-CH2-Py),2.67 (s, 4H, -CH2-CH2-), 2.26 (s, 6H, -N-CH3). 13C NMR (126 MHz,Methanol-d4) d 160.77, 152.19, 147.28, 146.07 (d, J = 10.3 Hz),108.87, 61.40, 58.17, 56.43, 56.07, 43.10. ESI-MS (in CH3OH).observed m/z 391.3 [(L2 + H)+] (z = 1); theoretical-391.23[(L2 + H)+] (z = 1). IR (cm1): 3375, 2945, 1626, 1584, 1447, 1425,1261, 1228, 1173, 1073, 994, 828, 651, 603.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of N1,N2-Dimethylethane-1,2-diamine, 110-70-3

Reference£º
Article; Singh, Nirupama; Niklas, Jens; Poluektov, Oleg; Van Heuvelen, Katherine M.; Mukherjee, Anusree; Inorganica Chimica Acta; vol. 455; (2017); p. 221 – 230;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

The important role of 31886-58-5

31886-58-5, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,31886-58-5 ,(R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, other downstream synthetic routes, hurry up and to see

As a common heterocyclic compound, it belongs to chiral-nitrogen-ligands compound, name is (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, and cas is 31886-58-5, its synthesis route is as follows.

EXAMPLE A2; Preparation of (RC,SFc,SP)-1-[2-(1-dimethylaminoethyl)ferrocen-1-yl]cyclo-hexylphosphino-1′-bromoferrocene of the formula (A2) [Cy=cyclohexyl; Me=methyl]; a) Preparation of the Monochlorophosphine X4; 1.3 M s-BuLi solution in cyclohexane (7.7 ml, 10 mmol) is added to a solution of (R)-N,N-dimethyl-1-ferrocenylethylamine[(R)-Ugi amine] (2.57 g, 10 mmol) in TBME (15 ml) over a period of 10 minutes and at a temperature below -20 C. After the addition is complete, the reaction mixture is warmed to 0 C. and stirred at this temperature for 1.5 hours. Dichlorocyclohexylphosphine (1.51 ml, 10 mmol) is then added at a temperature below -60 C. over a period of 10 minutes. The mixture is then stirred at -78 C. for another 30 minutes, the cooling bath is removed, the reaction mixture is stirred for a further one hour. This gives the monochlorophosphine X4.; EXAMPLE 1; Preparation of [(RC,RC,)(SFc,SFc,)(SP,SP)-1-[2-(1-dimethylaminoethyl)ferrocenyl]phenylphosphino-1′-[2-(1-dimethylaminoethyl)ferrocenyl]cyclohexylphosphinoferrocene of the formula (B1) [R=phenyl; Me=methyl, R’=cyclohexyl]; Reaction mixture a) 1.3 M s-BuLi solution in cyclohexane (3.85 ml, 5 mmol) is added to a solution of (R)-N,N-dimethyl-1-ferrocenylethylamine[(R)-Ugi amine] (1.28 g, 5 mmol) in TBME (10 ml) over a period of 10 minutes and at a temperature below -20 C. After the addition is complete, the reaction mixture is warmed to 0 C. and stirred at this temperature for another 1.5 hours. Dichlorocyclohexylphosphine (0.76 ml, 5 mmol) is then added at a temperature below -60 C. over a period of 10 minutes. The reaction mixture is then stirred at -78 C. for another 30 minutes, the cooling bath is removed and the reaction mixture is stirred for a further one hour to give the monochlorophosphine X7.; EXAMPLE 3; Preparation of [(RC,RC,)(SFc,SFc,)(SP,SP)-1-[2-(1-dimethylaminoethyl)-ferrocenyl]phenylphosphino-1′-[2-(1-dimethylaminoethyl)ferrocenyl]cyclohexyl-phosphinoferrocene of the formula (B1) [R=phenyl; Me=methyl, R’=cyclohexyl]; a) 1.3 M s-BuLi solution in cyclohexane (3.85 ml, 5 mmol) is added to a solution of (R)-N,N-dimethyl-1-ferrocenylethylamine[(R)-Ugi amine] (1.28 g, 5 mmol) in TBME (10 ml) over a period of 10 minutes and at a temperature below -20 C. After the addition is complete, the reaction mixture is warmed to 0 C. and stirred at this temperature for another 1.5 hours. This gives the lithiated Ugi amine X9.; EXAMPLE 4; Preparation of [(RC,RC,)(SFc,SFc,)(SP,SP)-1-[2-[(1-dimethylaminoethyl)-ferrocenyl]phenylphosphino-1′-[2-(1-dimethylaminoethyl)ferrocenyl]isopropyl-phosphinoferrocene of the formula (B2) [R=phenyl; Me=methyl, R’=isopropyl]; a) 1.3 M s-BuLi solution in cyclohexane (3.08 ml, 4 mmol) is added to a solution of (R)-N,N-dimethyl-1-ferrocenylethylamine[(R)-Ugi amine] (1.03 g, 4 mmol) in TBME (10 ml) over a period of 10 minutes and at a temperature below -20 C. After the addition is complete, the reaction mixture is warmed to 0 C. and stirred at this temperature for another 1.5 hours. This gives the lithiated Ugi amine X9.; b) In a vessel, 7.7 ml (10 mmol) of s-BuLi (1.3 M in cyclohexane) are added to a solution of (R)-N,N-dimethyl-1-ferrocenylethylamine[(R)-Ugi amine] (2.57 g, 10 mmol) in TBME (15 ml) at a temperature below -20 C. over a period of 10 minutes. After the addition is complete, the reaction mixture is warmed to 0 C. and stirred at this temperature for another 1.5 hours. Dichloroisopropylphosphine (1.23 ml, 10 mmol) is then added at a temperature below -60 C. over a period of 10 minutes. The mixture is then stirred at -78 C. for another 30 minutes, the cooling bath is removed and the reaction mixture is stirred for a further one hour. This gives the monochlorophosphine X8.; EXAMPLE ; Preparation of [(RC,RC),(SFc,SFc),(SP,SP)]-1-[2-(1-N,N-dimethylamino-ethyl)-1-ferrocenyl](4-methoxyphenyl)phosphino-1′-[2-(1-N,N-dimethylaminoethyl)-1-ferrocenyl]cyclohexylphosphinoferrocene of the formula (B6); Reaction mixture a): 7.7 ml (10 mmol) of s-BuLi (1.3 M in cyclohexane) are added dropwise to a cooled solution of 2.57 g (10 mmol) of (R)-N,N-dimethyl-1-ferrocenyl-ethylamine [(R)-Ugi amine] in TBME (15 ml) at such a rate that the temperature remains below -20 C. After the addition, the temperature is allowed to rise to 0 C. and the mixture is stirred at this temperature for another 1.5 hours. The mixture is then cooled to -78 C. and 1.52 ml (10 mmol) of cyclohexyldichlorophosphine are added dropwise at such a rate that the temperature does not exceed -60 C. The mixture is stirred at -78 C. for a further 30 minutes, the cooling is then removed and the suspension containing the monochlorophosphine (RC,SFc)-[2-(1-N,N-dimethylamino-ethyl)-1-ferrocenyl]cyclohexylchlorophosphine is stirred for a further 1 hour.; Reaction mixture d): 7.7 ml (10 mmol) of s-BuLi (1.3 M in cyclohexane) are added dropwise to a cooled solution of (R)-N,N-dimethyl-1-ferrocenylethylamine[(R)-Ugi amine] (2.57 g, 10 mmol) in TBME (15 ml) at such a rate th…

31886-58-5, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,31886-58-5 ,(R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, other downstream synthetic routes, hurry up and to see

Reference£º
Patent; Chen, Weiping; Spindler, Felix; Nettekoven, Ulrike; Pugin, Benoit; US2010/160660; (2010); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Share a compound : 33527-91-2

33527-91-2, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,33527-91-2 ,Tris[2-(dimethylamino)ethyl]amine, other downstream synthetic routes, hurry up and to see

It is a common heterocyclic compound, the chiral-nitrogen-ligands compound, Tris[2-(dimethylamino)ethyl]amine, cas is 33527-91-2 its synthesis route is as follows.

Ni(CH3COO)2 (53 mg, 0,30 mmol) was dissolved in the smallest possible amount of methanol while an excess of Me6TREN was dissolved in acetone. After addition of the second solution to the first one, a change in colour from light blue to green was observed. An excess of KPF6, dissolved in acetone, was added to the previous solution in order to promote the anion metathesis reaction. The solvent was evaporated and the green solid obtained was dissolved in pure acetone. A white solid remained undissolved on the bottomof the flask (CH3COOK) and was filtered off. The solution was dried under vacuum and the solid dissolved in dichloromethane in order to eliminate the excess of KPF6. After filtration of the solid residue,the solution was reduced in volume and the pure product 2 was precipitated upon addition of n-pentane. Crystals suitable for XRD were grown at low temperature by slow diffusion of n-pentane into a dichloromethane solution of 2. Yield: 86%; Anal. Calc. for[Ni(L1)(CH3COO)](PF6)H2O: C, 32.90; H, 6.90; N, 10.96. Found: C,33.23; H, 6.97; N, 10.93%.

33527-91-2, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,33527-91-2 ,Tris[2-(dimethylamino)ethyl]amine, other downstream synthetic routes, hurry up and to see

Reference£º
Article; Tordin, Elisa; List, Manuela; Monkowius, Uwe; Schindler, Siegfried; Knoer, Guenther; Inorganica Chimica Acta; vol. 402; (2013); p. 90 – 96;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

New learning discoveries about 110-70-3

The chemical industry reduces the impact on the environment during synthesis,110-70-3,N1,N2-Dimethylethane-1,2-diamine,I believe this compound will play a more active role in future production and life.

110-70-3, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. N1,N2-Dimethylethane-1,2-diamine, cas is 110-70-3,the chiral-nitrogen-ligands compound, it is a common compound, a new synthetic route is introduced below.

Example 1203 ,3 -Dimethyl-2-{3 – [methyl- (2-methylamino-ethyl) -amino] -phenyl}- 1 ,2,3 ,4- tetrahydro-quinoline-6-carboxylic acidA mixture of 2-(3-bromo-phenyl)-3,3-dimethyl-l,2,3,4-tetrahydro-quinoline-6-carboxylic acid (600 mg, 1.7 mmol), N,N’-dimethyl-ethane-l,2-diamine (0.37 mL, 3.4 mmol), copper(I) iodide (96 mg, 0.5 mmol), N, N-dimethylglycine hydrochloride (140 mg, 1.0 mmol) and potassium carbonate (923 mg, 6.7 mmol) in dimethyl sulfoxide (5 mL)was stirred at 120C for 16 h. Then the reaction mixture cooled to room temperature. The reaction mixture was extracted with ethyl acetate (2 x 150 mL), washed with water (2 x 50 mL) and saturated aqueous ammonium chloride solution (2 x 50 mL), dried over anhydrous sodium sulfate and then concentrated in vacuo. Purification by Waters automated flash system (column: Xterra 30 mm x 100 mm, sample manager 2767, pump 2525, detector: ZQ mass and UV 2487, solvent system: acetonitrile and 0.1% ammonium hydroxide in water) afforded 3,3-dimethyl-2-{3- [methyl-(2-methylamino-ethyl)-amino] – phenyl} -l,2,3,4-tetrahydro-quinoline-6-carboxylic acid (500 mg, 80%) as a white solid : LC/MS m/e calcd for C22H29N3O2 (M+H)+: 368.50, observed: 368.1.

The chemical industry reduces the impact on the environment during synthesis,110-70-3,N1,N2-Dimethylethane-1,2-diamine,I believe this compound will play a more active role in future production and life.

Reference£º
Patent; F. HOFFMANN-LA ROCHE AG; CHEN, Li; FENG, Lichun; HUANG, Mengwei; LIU, Yongfu; WU, Guolong; WU, Jim, Zhen; ZHOU, Mingwei; WO2011/128251; (2011); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Analyzing the synthesis route of 31886-58-5

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, 31886-58-5

31886-58-5, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, cas is 31886-58-5,the chiral-nitrogen-ligands compound, it is a common compound, a new synthetic route is introduced below.

(S)-Ugi-amine 1 (2.57 g, 10 mmol) was dissolved in 25 mL of diethyl ether, and n-butyllithium (8 mL, 2.5 mol/L) was added dropwise to the reaction system under nitrogen protection and ice salt bath cooling. After that, the temperature was slowly raised to room temperature, and the reaction was stirred for 3 hours. To the ice salt bath, chlorobis(3,5-di-t-butylphenyl)phosphine (8.90 g, 20 mmol) was added dropwise thereto, and after the completion of the dropwise addition, the mixture was slowly warmed to room temperature, and the reaction was stirred for 24 hours. The reaction was quenched with saturated sodium bicarbonate solution and extracted with dichloromethane. Dry over anhydrous sodium sulfate, Concentration and column chromatography gave product 7 (3.79 g, 57%).

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, 31886-58-5

Reference£º
Patent; Zhejiang University of Technology; Zhong Weihui; Ling Fei; Nian Sanfei; (14 pag.)CN108774271; (2018); A;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Share a compound : 110-70-3

110-70-3, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,110-70-3 ,N1,N2-Dimethylethane-1,2-diamine, other downstream synthetic routes, hurry up and to see

As a common heterocyclic compound, it belongs to chiral-nitrogen-ligands compound, name is N1,N2-Dimethylethane-1,2-diamine, and cas is 110-70-3, its synthesis route is as follows.

36.2 g (0.40 mol) acrylic acid chloride and 16 mg MEHQ were dissolved in 600 ml methylene chloride in a 1.5-l sulphonation flask and cooled to -5 C. Then, a mixture of 17.6 g (0.20 mol) N,N’-dimethylethylenediamine, 40.8 g (0.40 mol) triethylamine and 400 ml methylene chloride was added dropwise accompanied by stirring so that the temperature remained between -5 and 0 C. After 1.5 h stirring, the mixture was allowed to warm up to room temperature, stirred overnight, the precipitate formed was filtered off and the filtrate concentrated under vacuum. The raw product was taken up in 150 ml acetone, filtered through a frit with 50 g silica gel 60 and concentrated again. After repeating this process, 30.1 g (77% yield) of a light yellow liquid remained. 1H-NMR (400 MHz, CDCl3): delta=3.10 and 3.14 (s; 2*3H, CH3), 3.54-3.67 (2m; 4H, CH2N), 5.68, 6.35 and 6.56 (m; 3*2H, CH=CH2) ppm.

110-70-3, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,110-70-3 ,N1,N2-Dimethylethane-1,2-diamine, other downstream synthetic routes, hurry up and to see

Reference£º
Patent; Ivoclar Vivadent AG; US6953832; (2005); B2;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Some tips on Tris[2-(dimethylamino)ethyl]amine

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Tris[2-(dimethylamino)ethyl]amine, 33527-91-2

33527-91-2, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Tris[2-(dimethylamino)ethyl]amine, cas is 33527-91-2,the chiral-nitrogen-ligands compound, it is a common compound, a new synthetic route is introduced below.

General procedure: LiBH4 (22 mg, 1 mmol) and Me6TREN (0.52 mL, 2 mmol) wereadded to 5 mL of THF. This was heated to reflux for 1 h at whichpoint the heat and stirrer were turned off. Slow cooling of the solutionyielded X-ray quality colorless crystals

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Tris[2-(dimethylamino)ethyl]amine, 33527-91-2

Reference£º
Article; Kennedy, Alan R.; McLellan, Ross; McNeil, Greg J.; Mulvey, Robert E.; Robertson, Stuart D.; Polyhedron; vol. 103; (2016); p. 94 – 99;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Introduction of a new synthetic route about 31886-58-5

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, 31886-58-5

31886-58-5, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, cas is 31886-58-5,the chiral-nitrogen-ligands compound, it is a common compound, a new synthetic route is introduced below.

Example B18: Reaction schemeX24 ml (10 mmol) of n-BuLi (2.5 M in hexane) are added dropwise to a solution of 3.44 g (10 mmol) of 1 ,1 ‘-dibromoferrocene in 10 ml of tetrahydrofuran (THF) at a temperature of < -30C. The mixture is stirred at this temperature for a further 1.5 hours. 2.21 ml (10 mmol) of dicyclohexylphosphine chloride are then added dropwise at such a rate that the temperature does not exceed -20C. After stirring the mixture for a further 10 minutes, the temperature is allowed to rise to room temperature and the mixture is stirred for another one hour. It is cooled back down to 30C and 4.4 ml (11 mmol) of n-BuLi (2.5 M in hexane) are added dropwise. The mixture is subsequently stirred at -10C for 30 minutes. The reaction mixture is then cooled to -78C and 1.49 ml (11 mmol) of dichlorophenylphosphine are added. The mixture is stirred at -78C for 20 minutes and then at room temperature for a further one hour. This gives a reaction mixture comprising the monochlorodiphosphine X6. In a second vessel, 8.5 ml (11 mmol) of S-BuLi (1.3 M in cyclohexane) are added dropwise to a solution of 2.57 g (10 mmol) of (R)-1-dimethylamino-1-ferrocenylethane in 15 ml of diethyl ether at <-10C. After stirring the mixture at the same temperature for 10 minutes, the temperature is allowed to rise to 0C and the mixture is stirred for another 1.5 hours. This reaction solution is subsequently added by means of a cannula to the reaction mixture comprising the monochlorodiphosphine X6 which has been cooled to -10C. After the addition, the mixture is stirred at room temperature for another 2 hours. After addition of 10 ml of water, the reaction mixture is extracted, the organic phase is dried over sodium sulphate and the solvent is distilled off under reduced pressure on a rotary evaporator. The residue is heated at 140C for one hour. Column chromatography (silica gel 60; eluent: hexane/ethyl acetate 4:1 ) gives the compound of the formula (B1 ) in a yield of 47%. 31P- and 1H-NMR of the product are identical with those of Example B1.; Example B19: Reaction schemeReaction mixture 1 : 4 ml (10 mmol) of n-BuLi (2.5 M in hexane) are added dropwise to a solution of 3.44 g (10 mmol) of 1 ,1 '-dibromoferrocene in 10 ml of tetrahydrofuran (THF) at a temperature of < -30C. The mixture is stirred at this temperature for a further 30 minutes. It is then cooled to -78C and 1.36 ml (10 mmol) of phenyldichlorophosphine are added. After stirring the mixture for a further 10 minutes, the temperature is allowed to rise to room temperature and the mixture is stirred for another one hour.Reaction mixture 2: In a second vessel, 8.0 ml (10.4 mmol) of S-BuLi (1.3 M in cyclohexane) are added dropwise to a solution of 2.57 g (10 mmol) of (R)-1-dimethylamino-1-ferrocenyl- ethane in 15 ml of diethyl ether at <-10C. After stirring the mixture at the same temperature for 10 minutes, the temperature is allowed to rise to 0C and the mixture is stirred for another 1.5 hours.The reaction mixture 1 is slowly added to the reaction mixture 2 at a temperature below -10C. The mixture is subsequently stirred at room temperature for 1.5 hours. At a temperature in the range from -78C to -50C, 8 ml (10.4 mmol) of S-BuLi (1.3 M in cyclohexane) are then added dropwise. After stirring the mixture at -78C for 20 minutes, the temperature is allowed to rise to 0C and the mixture is stirred for a further 30 minutes before 2.21 ml (10 mmol) of chloro- dicyclohexylphosphine are added at -20C. The mixture is stirred at 20C for another 20 minutes and finally at room temperature for another 1.5 hours. The work-up and thermal epimerization are carried out in a manner analogous to that described in Example B18. The compound of the formula (B1 ) is obtained in a yield of 31 %. 31P- and 1H-NMR of the product are identical with those of Example B1.; Example B20:8.5 ml (11 mmol) of S-BuLi (1.3 M in cyclohexane) are added dropwise to a solution of 2.83 g (1 1 mmol) of (R)-1 -dimethylamino-1 -ferrocenylethane in 15 ml of diethyl ether at <-10C. The cooling is then removed and the mixture is stirred at room temperature for another 2 hours. After cooling to -10C, 2.92 g (10 mmol) of the compound A3 are added and the mixture is stirred at this temperature for a further 30 minutes. The temperature is allowed to rise to room temperature and the mixture is stirred for another one hour. After addition of 10 ml of 1 N NaOH, the reaction mixture is extracted, the organic phase is dried over sodium sulphate and the solvent is distilled off under reduced pressure on a rotary evaporator. A 1H-NMR of the residue shows that the reaction is very stereoselective and gives virtually exclusively the desired diastereomer (RC,SFC, Sp)-I -[2-(1 -dimethylaminoethyl)ferrocen-1 -yl]phenylphosphino- 1 '-dicyclohexylphosphinoferrocene. After chromatography (silica gel 60; eluent = hexane/ethyl acetate 4:1 ), this product is obtained in a yield of 37%. 31P- and 1H-NMR of the produ…

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, 31886-58-5

Reference£º
Patent; SOLVIAS AG; WO2007/116081; (2007); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Downstream synthetic route of N1,N2-Dimethylethane-1,2-diamine

110-70-3, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,110-70-3 ,N1,N2-Dimethylethane-1,2-diamine, other downstream synthetic routes, hurry up and to see

Name is N1,N2-Dimethylethane-1,2-diamine, as a common heterocyclic compound, it belongs to chiral-nitrogen-ligands compound, and cas is 110-70-3, its synthesis route is as follows.

A solution of di-tert-butyl dicarbonate (4.95 g, 22.69 mmol) in CH2Cl2 (240 mL) was added dropwise to a stirred solution of N,N?-dimethylethane-1,2-diamine (4 g, 45.38 mmol) in CH2Cl2 (80 mL) over a period of 20h. The resulting mixture was stirred at r.t. for 3h. The mixture was then washed sequentially with sat. Na2CO3 (2 x 100 mL), water (50 mL), and sat. brine (50 mL). The organic solution was dried (MgSO4) and concentrated in vacuo. Purification by FCC, eluting with 0-10% CH3OH in CH2Cl2 gave the title compound (2.177 g, 51%) as a pale yellow oil; 1H NMR: 1.40 (9H, s), 2.28 (3H, s), 2.57 (2H, t), 2.79 (3H, s), 3.20 (2H, t).

110-70-3, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,110-70-3 ,N1,N2-Dimethylethane-1,2-diamine, other downstream synthetic routes, hurry up and to see

Reference£º
Patent; ASTRAZENECA AB; ASTRAZENECA UK LIMITED; BUTTERWORTH, Sam; FINLAY, Maurice, Raymond, Verschoyle; WARD, Richard, Andrew; KADAMBAR, Vasantha, Krishna; CHANDRASHEKAR, Reddy, C.; MURUGAN, Andiappan; REDFEARN, Heather, Marie; WO2013/14448; (2013); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis