Analyzing the synthesis route of 119139-23-0

119139-23-0, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,119139-23-0 ,3,4-Di(1H-indol-3-yl)-1H-pyrrole-2,5-dione, other downstream synthetic routes, hurry up and to see

119139-23-0, A common heterocyclic compound, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.”119139-23-0

EXAMPLE 13 20 ml of a 1M solution of LiAlH4 in diethyl ether was added to a solution of 1.0 g of 3,4-bis(3-indolyl)-1H-pyrrole-2,5-dione in 140 ml of THF. The mixture was stirred for 18 hours under nitrogen. The mixture was cooled to 0 C., quenched with 50 ml of water, then acidified to pH 2 with 2M hydrochloric acid and extracted with ethyl acetate. The organic extracts were washed with saturated sodium bicarbonate solution, dried and evaporated. The residue was purified on silica gel with 5-10% methanol in dichloromethane. The first product eluted was triturated with ethyl acetate/hexane to give 175 mg of 3,4-bis(3-indolyl)-3-pyrrolin-2-one, m.p. 290-293 C. (decomposition). The second product eluted was crystallized from ethyl acetate/chloroform to give 490 mg of 5-hydroxy-3,4-bis(3-indolyl)-3-pyrrolin-2-one, m.p. above 250 C. (decomposition).

119139-23-0, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,119139-23-0 ,3,4-Di(1H-indol-3-yl)-1H-pyrrole-2,5-dione, other downstream synthetic routes, hurry up and to see

Reference£º
Patent; Hoffmann-La Roche Inc.; US5057614; (1991); A;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

The important role of 33527-91-2

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,33527-91-2,Tris[2-(dimethylamino)ethyl]amine,its application will become more common.

Name is Tris[2-(dimethylamino)ethyl]amine, as a common heterocyclic compound, it belongs to chiral-nitrogen-ligands compound, and cas is 33527-91-2, its synthesis route is as follows.

To a solution of tris(2-dimethylaminoethyl)amine (0.403 g, 1.75 mmol) in acetonitrile (4 mL) was added 1-bromohexadecane (1.63 g, 5.35 mmol). The resulting mixture was heated at reflux with stirring for 18 hours, during which time awhite solid was observed. After cooling, and the addition of a cold hexanes/acetone mixture (15 mL, 1:1), to the reaction flask, the precipitate was filtered with a Buchner funnel, and rinsed with a cold hexanes/acetone mixture (2O mL, 1:1), resulting in T-16,16,16 (1.67 g, 84%) as a white powder; mp=229-258 C; ?H NMR (300 MI-Tz, CDC13) oe 4.11-4.02 (m, 6H), 3.64-3.55 (m, 6H), 3.45-3.37 (m, 6H), 3.35(s, 18H), 1.78-1.66 (m, 6H), 1.40-1.18 (m, 78H), 0.88-0.81 (m, 9H); high resolution mass spectrum (ESI) m/z 302.0073 ([Mj3 calculated for [C6oH,29N4j3: 302.0067). ?H spectmm of compound T-16,16,16 can be found in Figure 54.

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,33527-91-2,Tris[2-(dimethylamino)ethyl]amine,its application will become more common.

Reference£º
Patent; TEMPLE UNIVERSITY-OF THE COMMONWEALTH SYSTEM OF HIGHER EDUCATION; VILLANOVA UNIVERSITY; WUEST, William, M.; MINBIOLE, Kevin, P.C.; BARBAY, Deanna, L.; (227 pag.)WO2016/172436; (2016); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Application of Cinnolin-4-ol

33527-91-2, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,33527-91-2 ,Tris[2-(dimethylamino)ethyl]amine, other downstream synthetic routes, hurry up and to see

As a common heterocyclic compound, it belongs to chiral-nitrogen-ligands compound, name is Tris[2-(dimethylamino)ethyl]amine, and cas is 33527-91-2, its synthesis route is as follows.

General procedure: The copper complex Cu5-1 was dissolved in water, and an excessive amount of an aqueous solution of saturated sodium tetrafluoroborate (manufactured by Wako Pure Chemical Industries, Ltd.) was added while stirring. A precipitated solid was collected by filtering and a copper complex Cu5-72 was obtained.

33527-91-2, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,33527-91-2 ,Tris[2-(dimethylamino)ethyl]amine, other downstream synthetic routes, hurry up and to see

Reference£º
Patent; FUJIFILM Corporation; Sasaki, Kouitsu; Kawashima, Takashi; Hitomi, Seiichi; Shiraishi, Yasuharu; US10215898; (2019); B2;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

The important role of 110-70-3

110-70-3, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,110-70-3 ,N1,N2-Dimethylethane-1,2-diamine, other downstream synthetic routes, hurry up and to see

As a common heterocyclic compound, it belongs to chiral-nitrogen-ligands compound, name is N1,N2-Dimethylethane-1,2-diamine, and cas is 110-70-3, its synthesis route is as follows.

Preparation of Methyl-(2-methylamino-ethyl)-carbamic acid tert-butyl esterTo an ice-cooled solution of N,N’-dimethyethylenediamine (10 ml_, 91.0 mmol) in dry THF (150 ml.) was added a solution of BoC2O (4.97 g, 22.8 mmol) in dry THF (50 ml.) over 30 minutes. The reaction mixture was stirred for 1 h at 00C then at rt overnight, and concentrated in vacuo. The resulting residue was taken up in a mixture of EA and a sat.NH4CI solution. The organic layer was separated, washed with brine, dried (MgSO4), filtered and concentrated under reduced pressure. FC (10 % MeOH in DCM) afforded the title compound as a yellow oil (2.90 g, 17%). LC-MS (analytic A, Zorbax SB-AQ column, acidic conditions): tR = 0.50 min; [M+H]+ 189.40.

110-70-3, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,110-70-3 ,N1,N2-Dimethylethane-1,2-diamine, other downstream synthetic routes, hurry up and to see

Reference£º
Patent; ACTELION PHARMACEUTICALS LTD; AISSAOUI, Hamed; BOSS, Christoph; CORMINBOEUF, Olivier; FRANTZ, Marie-Celine; GRISOSTOMI, Corinna; WO2010/58353; (2010); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Some tips on (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, 31886-58-5

31886-58-5, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, cas is 31886-58-5,the chiral-nitrogen-ligands compound, it is a common compound, a new synthetic route is introduced below.

(1) Raw material storage tanks 1,4 are respectively methyl tert-butyl ether solution of N,N-dimethyl-(R)-1-[(S)-ferrocenyl]ethylamine (mass fraction 15%) And n-hexane solution of n-butyllithium (2.7M), methyl t-butyl group of N,N-dimethyl-(R)-1-[(S)-ferrocenyl]ethylamine was controlled by a metering pump the flow rate of the ether solution was 50 mL/min, the flow rate of the n-hexane solution of n-butyllithium was 14 mL/min, and the thermostatic module injected into the microchannel reactor was thermostated at 25 C; after constant temperature treatment, the first mixing module of the microchannel reactor was introduced. The reaction was carried out at a reaction temperature of 25 C and a residence time of 10.7 s.(2) reacting the effluent of the first mixing module with diphenylphosphine chloride in a second mixing module, controlling the flow rate of diphenylphosphonium chloride to 7 mL/min by a metering pump, and the reaction temperature is 35 C, and residence time 9.8s.(3) The effluent of the microchannel reactor was acidified to neutral with concentrated hydrochloric acid, extracted with ethyl acetate, dried over anhydrous sodium sulfate and evaporated to give a brown solid N,N-dimethyl-(R)-1- [(S)-2-(diphenylphosphino)ferrocenyl]ethylamine crude,Recrystallization from ethanol gave a pale yellow solid N,N-dimethyl-(R)-1-[(S)-2-(diphenylphosphino)ferrocenyl]ethylamine, N,N-dimethyl The mass ratio of the crude -(R)-1-[(S)-2-(diphenylphosphino)ferrocenyl]ethylamine to ethanol was 1:5; the yield was 82.4%.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, 31886-58-5

Reference£º
Patent; Xi’an Modern Chemical Institute; Yang Cuifeng; Chen Tao; Xu Zegang; Mao Mingzhen; Zhang Xiaoguang; Ning Binke; Su Tianduo; Li Bingbo; Wang Yuemei; Wei Tianqi; Zhang Yuanyuan; (7 pag.)CN108456235; (2018); A;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Share a compound : 110-70-3

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of N1,N2-Dimethylethane-1,2-diamine, 110-70-3

110-70-3, A common heterocyclic compound, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.”110-70-3

The above mentioned protocol was adapted for preparation ofligand L2. In a solution of 2-(chloromethyl)-3,4-dimethoxypyridinehydrochloride (2.09 g, 9.34 mmol) in 10 mL of water, a solution ofpotassium bicarbonate(2.73 g, 19.74 mmol) in water (10 mL) wasadded dropwise. The reaction mixture was stirred at room temperaturefor next 30 min. After stirring is done, solution was extractedwith dichloromethane (3 20 mL). The combined dichloromethanelayer was treated with anhydrous sodium sulfate. Thesolution was filtered and solvent was removed by rotatory evaporation.The collected light yellow oil was dissolved in dichloromethane(10 mL). The 2-(chloromethyl)-3,4-dimethoxypyridinesolution in dichloromethane was added dropwise to a solution of N,N0-dimethylethylenediamine (0.503 mL, 4.67 mmol) in dichloromethane(15 mL). In the next step aqueous 1 M sodium hydroxide(10 mL) was slowly added and solution was stirred for additional60 h at room temperature. After 60 h of stirring followed by therapid addition of a second fraction of aqueous 1 M sodium hydroxide(10 mL, 10 mmol), the product was extracted with dichloromethane(3 25 mL). The combined organic layers were driedover anhydrous sodium sulfate and filtered. Subsequently, theexcess solvent was evaporated by vacuum to afford yellow colorviscous oil (1.86 g, Yield 89%). 1H NMR (500 MHz, Methanol-d4) d8.14 (d, 2H, pyridine ring), 7.05 (d, 2H, pyridine ring), 3.95 (s,6H,-O-CH3-Py), 3.85 (s, 6H,-O-CH3-Py), 3.66 (s, 4H,-N-CH2-Py),2.67 (s, 4H, -CH2-CH2-), 2.26 (s, 6H, -N-CH3). 13C NMR (126 MHz,Methanol-d4) d 160.77, 152.19, 147.28, 146.07 (d, J = 10.3 Hz),108.87, 61.40, 58.17, 56.43, 56.07, 43.10. ESI-MS (in CH3OH).observed m/z 391.3 [(L2 + H)+] (z = 1); theoretical-391.23[(L2 + H)+] (z = 1). IR (cm1): 3375, 2945, 1626, 1584, 1447, 1425,1261, 1228, 1173, 1073, 994, 828, 651, 603.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of N1,N2-Dimethylethane-1,2-diamine, 110-70-3

Reference£º
Article; Singh, Nirupama; Niklas, Jens; Poluektov, Oleg; Van Heuvelen, Katherine M.; Mukherjee, Anusree; Inorganica Chimica Acta; vol. 455; (2017); p. 221 – 230;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

New learning discoveries about 110-70-3

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand N1,N2-Dimethylethane-1,2-diamine reaction routes.

110-70-3, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. N1,N2-Dimethylethane-1,2-diamine, cas is 110-70-3,the chiral-nitrogen-ligands compound, it is a common compound, a new synthetic route is introduced below.

2-(2-methoxyphenyl)-1,3-dimethylimidazolidine. A solution of o-anisaldehyde (9.0 g, 66 mmol) and N,N’-dimethylethylenediamine (7.9 mL, 73 mmol) in ethanol (180 mL) was stirred at r.t. for overnight. MgSO4 (30 g) was added and the mixture was stirred for 20 min. The reaction mixture was filtered and washed with ether. The solvent was removed in vacuo to afford 2-(2-methoxyphenyl)-1,3-dimethylimidazolidine as a light yellow solid, 12 g, yield 88%. 1H NMR (500 MHz, CHLOROFORM-D) delta ppm 2.21 (s, 6H) 2.57-2.72 (m, 2H) 3.34 (d, J=2.75 Hz, 2H) 3.82 (s, 3H) 4.13 (s, 1H) 6.88 (d, J=8.24 Hz, 1H) 7.00 (t, J=7.48 Hz, 1H) 7.25-7.30 (m, 1H) 7.67 (d, J=7.63 Hz, 1H).

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand N1,N2-Dimethylethane-1,2-diamine reaction routes.

Reference£º
Patent; Bristol-Myers Squibb Company; US2007/270406; (2007); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

The important role of 31886-58-5

31886-58-5, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,31886-58-5 ,(R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, other downstream synthetic routes, hurry up and to see

As a common heterocyclic compound, it belongs to chiral-nitrogen-ligands compound, name is (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, and cas is 31886-58-5, its synthesis route is as follows.

General procedure: To a solution of (R)-Ugi?s amine 3 (2.57 g, 10 mmol) in TBME (20 mL) was added 1.6 M t-BuLi solution in n-hexane (6.8 mL, 10.88 mmol) at 0 C. After the addition was complete, the mixture was warmed to room temperature, and stirred for 1.5 h at room temperature. The mixture was then cooled to 0 C again, and Ar2PCl (11 mmol) was added in one portion. After stirring for 20 min at 0 C, the mixture was warmed to room temperature, and stirred for 1.5 h at room temperature. The mixture was then quenched by the addition of saturated NaHCO3 solution (20 mL). The organic layer was separated and dried over MgSO4, and the solvent was removed under reduced pressure, after which the filtrate was concentrated. The residue was purified by chromatography to afford 4a, 4e, and 4f.

31886-58-5, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,31886-58-5 ,(R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, other downstream synthetic routes, hurry up and to see

Reference£º
Article; Nie, Huifang; Zhou, Gang; Wang, Quanjun; Chen, Weiping; Zhang, Shengyong; Tetrahedron Asymmetry; vol. 24; 24; (2013); p. 1567 – 1571;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Extracurricular laboratory: Synthetic route of 110-70-3

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand N1,N2-Dimethylethane-1,2-diamine reaction routes.

110-70-3, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. N1,N2-Dimethylethane-1,2-diamine, cas is 110-70-3,the chiral-nitrogen-ligands compound, it is a common compound, a new synthetic route is introduced below.

The compound N,N’-dimethylethylenediamine (20 g, 0.226 mol)Soluble in 100mL of dichloromethane,50 mL of Boc anhydride (14.8 g, 0.068 mol) was added dropwise in an ice water bath.Dichloromethane mixture,Drop the room temperature reaction,The progress of the reaction was monitored by TLC (DCM: MeOH = 10:1). filter,The dry filtrate was concentrated under reduced pressure at 40 C.After the column, the product was 9g.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand N1,N2-Dimethylethane-1,2-diamine reaction routes.

Reference£º
Patent; Sichuan Bai Li Pharmaceutical Co., Ltd.; Zhu Yi; Li Jie; Wan Weili; Zhuo Shi; Li Gangrui; (28 pag.)CN109106951; (2019); A;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

The important role of 31886-58-5

31886-58-5, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,31886-58-5 ,(R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, other downstream synthetic routes, hurry up and to see

31886-58-5, A common heterocyclic compound, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.”31886-58-5

EXAMPLE A2; Preparation of (RC,SFc,SP)-1-[2-(1-dimethylaminoethyl)ferrocen-1-yl]cyclo-hexylphosphino-1′-bromoferrocene of the formula (A2) [Cy=cyclohexyl; Me=methyl]; a) Preparation of the Monochlorophosphine X4; 1.3 M s-BuLi solution in cyclohexane (7.7 ml, 10 mmol) is added to a solution of (R)-N,N-dimethyl-1-ferrocenylethylamine[(R)-Ugi amine] (2.57 g, 10 mmol) in TBME (15 ml) over a period of 10 minutes and at a temperature below -20 C. After the addition is complete, the reaction mixture is warmed to 0 C. and stirred at this temperature for 1.5 hours. Dichlorocyclohexylphosphine (1.51 ml, 10 mmol) is then added at a temperature below -60 C. over a period of 10 minutes. The mixture is then stirred at -78 C. for another 30 minutes, the cooling bath is removed, the reaction mixture is stirred for a further one hour. This gives the monochlorophosphine X4.; EXAMPLE 1; Preparation of [(RC,RC,)(SFc,SFc,)(SP,SP)-1-[2-(1-dimethylaminoethyl)ferrocenyl]phenylphosphino-1′-[2-(1-dimethylaminoethyl)ferrocenyl]cyclohexylphosphinoferrocene of the formula (B1) [R=phenyl; Me=methyl, R’=cyclohexyl]; Reaction mixture a) 1.3 M s-BuLi solution in cyclohexane (3.85 ml, 5 mmol) is added to a solution of (R)-N,N-dimethyl-1-ferrocenylethylamine[(R)-Ugi amine] (1.28 g, 5 mmol) in TBME (10 ml) over a period of 10 minutes and at a temperature below -20 C. After the addition is complete, the reaction mixture is warmed to 0 C. and stirred at this temperature for another 1.5 hours. Dichlorocyclohexylphosphine (0.76 ml, 5 mmol) is then added at a temperature below -60 C. over a period of 10 minutes. The reaction mixture is then stirred at -78 C. for another 30 minutes, the cooling bath is removed and the reaction mixture is stirred for a further one hour to give the monochlorophosphine X7.; EXAMPLE 3; Preparation of [(RC,RC,)(SFc,SFc,)(SP,SP)-1-[2-(1-dimethylaminoethyl)-ferrocenyl]phenylphosphino-1′-[2-(1-dimethylaminoethyl)ferrocenyl]cyclohexyl-phosphinoferrocene of the formula (B1) [R=phenyl; Me=methyl, R’=cyclohexyl]; a) 1.3 M s-BuLi solution in cyclohexane (3.85 ml, 5 mmol) is added to a solution of (R)-N,N-dimethyl-1-ferrocenylethylamine[(R)-Ugi amine] (1.28 g, 5 mmol) in TBME (10 ml) over a period of 10 minutes and at a temperature below -20 C. After the addition is complete, the reaction mixture is warmed to 0 C. and stirred at this temperature for another 1.5 hours. This gives the lithiated Ugi amine X9.; EXAMPLE 4; Preparation of [(RC,RC,)(SFc,SFc,)(SP,SP)-1-[2-[(1-dimethylaminoethyl)-ferrocenyl]phenylphosphino-1′-[2-(1-dimethylaminoethyl)ferrocenyl]isopropyl-phosphinoferrocene of the formula (B2) [R=phenyl; Me=methyl, R’=isopropyl]; a) 1.3 M s-BuLi solution in cyclohexane (3.08 ml, 4 mmol) is added to a solution of (R)-N,N-dimethyl-1-ferrocenylethylamine[(R)-Ugi amine] (1.03 g, 4 mmol) in TBME (10 ml) over a period of 10 minutes and at a temperature below -20 C. After the addition is complete, the reaction mixture is warmed to 0 C. and stirred at this temperature for another 1.5 hours. This gives the lithiated Ugi amine X9.; b) In a vessel, 7.7 ml (10 mmol) of s-BuLi (1.3 M in cyclohexane) are added to a solution of (R)-N,N-dimethyl-1-ferrocenylethylamine[(R)-Ugi amine] (2.57 g, 10 mmol) in TBME (15 ml) at a temperature below -20 C. over a period of 10 minutes. After the addition is complete, the reaction mixture is warmed to 0 C. and stirred at this temperature for another 1.5 hours. Dichloroisopropylphosphine (1.23 ml, 10 mmol) is then added at a temperature below -60 C. over a period of 10 minutes. The mixture is then stirred at -78 C. for another 30 minutes, the cooling bath is removed and the reaction mixture is stirred for a further one hour. This gives the monochlorophosphine X8.; EXAMPLE ; Preparation of [(RC,RC),(SFc,SFc),(SP,SP)]-1-[2-(1-N,N-dimethylamino-ethyl)-1-ferrocenyl](4-methoxyphenyl)phosphino-1′-[2-(1-N,N-dimethylaminoethyl)-1-ferrocenyl]cyclohexylphosphinoferrocene of the formula (B6); Reaction mixture a): 7.7 ml (10 mmol) of s-BuLi (1.3 M in cyclohexane) are added dropwise to a cooled solution of 2.57 g (10 mmol) of (R)-N,N-dimethyl-1-ferrocenyl-ethylamine [(R)-Ugi amine] in TBME (15 ml) at such a rate that the temperature remains below -20 C. After the addition, the temperature is allowed to rise to 0 C. and the mixture is stirred at this temperature for another 1.5 hours. The mixture is then cooled to -78 C. and 1.52 ml (10 mmol) of cyclohexyldichlorophosphine are added dropwise at such a rate that the temperature does not exceed -60 C. The mixture is stirred at -78 C. for a further 30 minutes, the cooling is then removed and the suspension containing the monochlorophosphine (RC,SFc)-[2-(1-N,N-dimethylamino-ethyl)-1-ferrocenyl]cyclohexylchlorophosphine is stirred for a further 1 hour.; Reaction mixture d): 7.7 ml (10 mmol) of s-BuLi (1.3 M in cyclohexane) are added dropwise to a cooled solution of (R)-N,N-dimethyl-1-ferrocenylethylamine[(R)-Ugi amine] (2.57 g, 10 mmol) in TBME (15 ml) at such a rate th…

31886-58-5, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,31886-58-5 ,(R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, other downstream synthetic routes, hurry up and to see

Reference£º
Patent; Chen, Weiping; Spindler, Felix; Nettekoven, Ulrike; Pugin, Benoit; US2010/160660; (2010); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis