The effect of the change of (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine synthetic route on the product

There are, however, a few established termolecular elementary reactions. The reaction of nitric oxide with oxygen appears to involve termolecular steps. you can also browse my other articles about (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, CAS: 31886-58-5

Rate laws may be derived directly from the chemical equations for elementary reactions. This is not the case, however, for ordinary chemical reactions.31886-58-5, name is (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, below Introduce a new synthetic route. , 31886-58-5

Example B18: Reaction schemeX24 ml (10 mmol) of n-BuLi (2.5 M in hexane) are added dropwise to a solution of 3.44 g (10 mmol) of 1 ,1 ‘-dibromoferrocene in 10 ml of tetrahydrofuran (THF) at a temperature of < -30C. The mixture is stirred at this temperature for a further 1.5 hours. 2.21 ml (10 mmol) of dicyclohexylphosphine chloride are then added dropwise at such a rate that the temperature does not exceed -20C. After stirring the mixture for a further 10 minutes, the temperature is allowed to rise to room temperature and the mixture is stirred for another one hour. It is cooled back down to 30C and 4.4 ml (11 mmol) of n-BuLi (2.5 M in hexane) are added dropwise. The mixture is subsequently stirred at -10C for 30 minutes. The reaction mixture is then cooled to -78C and 1.49 ml (11 mmol) of dichlorophenylphosphine are added. The mixture is stirred at -78C for 20 minutes and then at room temperature for a further one hour. This gives a reaction mixture comprising the monochlorodiphosphine X6. In a second vessel, 8.5 ml (11 mmol) of S-BuLi (1.3 M in cyclohexane) are added dropwise to a solution of 2.57 g (10 mmol) of (R)-1-dimethylamino-1-ferrocenylethane in 15 ml of diethyl ether at <-10C. After stirring the mixture at the same temperature for 10 minutes, the temperature is allowed to rise to 0C and the mixture is stirred for another 1.5 hours. This reaction solution is subsequently added by means of a cannula to the reaction mixture comprising the monochlorodiphosphine X6 which has been cooled to -10C. After the addition, the mixture is stirred at room temperature for another 2 hours. After addition of 10 ml of water, the reaction mixture is extracted, the organic phase is dried over sodium sulphate and the solvent is distilled off under reduced pressure on a rotary evaporator. The residue is heated at 140C for one hour. Column chromatography (silica gel 60; eluent: hexane/ethyl acetate 4:1 ) gives the compound of the formula (B1 ) in a yield of 47%. 31P- and 1H-NMR of the product are identical with those of Example B1.; Example B19: Reaction schemeReaction mixture 1 : 4 ml (10 mmol) of n-BuLi (2.5 M in hexane) are added dropwise to a solution of 3.44 g (10 mmol) of 1 ,1 '-dibromoferrocene in 10 ml of tetrahydrofuran (THF) at a temperature of < -30C. The mixture is stirred at this temperature for a further 30 minutes. It is then cooled to -78C and 1.36 ml (10 mmol) of phenyldichlorophosphine are added. After stirring the mixture for a further 10 minutes, the temperature is allowed to rise to room temperature and the mixture is stirred for another one hour.Reaction mixture 2: In a second vessel, 8.0 ml (10.4 mmol) of S-BuLi (1.3 M in cyclohexane) are added dropwise to a solution of 2.57 g (10 mmol) of (R)-1-dimethylamino-1-ferrocenyl- ethane in 15 ml of diethyl ether at <-10C. After stirring the mixture at the same temperature for 10 minutes, the temperature is allowed to rise to 0C and the mixture is stirred for another 1.5 hours.The reaction mixture 1 is slowly added to the reaction mixture 2 at a temperature below -10C. The mixture is subsequently stirred at room temperature for 1.5 hours. At a temperature in the range from -78C to -50C, 8 ml (10.4 mmol) of S-BuLi (1.3 M in cyclohexane) are then added dropwise. After stirring the mixture at -78C for 20 minutes, the temperature is allowed to rise to 0C and the mixture is stirred for a further 30 minutes before 2.21 ml (10 mmol) of chloro- dicyclohexylphosphine are added at -20C. The mixture is stirred at 20C for another 20 minutes and finally at room temperature for another 1.5 hours. The work-up and thermal epimerization are carried out in a manner analogous to that described in Example B18. The compound of the formula (B1 ) is obtained in a yield of 31 %. 31P- and 1H-NMR of the product are identical with those of Example B1.; Example B20:8.5 ml (11 mmol) of S-BuLi (1.3 M in cyclohexane) are added dropwise to a solution of 2.83 g (1 1 mmol) of (R)-1 -dimethylamino-1 -ferrocenylethane in 15 ml of diethyl ether at <-10C. The cooling is then removed and the mixture is stirred at room temperature for another 2 hours. After cooling to -10C, 2.92 g (10 mmol) of the compound A3 are added and the mixture is stirred at this temperature for a further 30 minutes. The temperature is allowed to rise to room temperature and the mixture is stirred for another one hour. After addition of 10 ml of 1 N NaOH, the reaction mixture is extracted, the organic phase is dried over sodium sulphate and the solvent is distilled off under reduced pressure on a rotary evaporator. A 1H-NMR of the residue shows that the reaction is very stereoselective and gives virtually exclusively the desired diastereomer (RC,SFC, Sp)-I -[2-(1 -dimethylaminoethyl)ferrocen-1 -yl]phenylphosphino- 1 '-dicyclohexylphosphinoferrocene. After chromatography (silica gel 60; eluent = hexane/ethyl acetate 4:1 ), this product is obtained in a yield of 37%. 31P- and 1H-NMR of the produ…

There are, however, a few established termolecular elementary reactions. The reaction of nitric oxide with oxygen appears to involve termolecular steps. you can also browse my other articles about (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, CAS: 31886-58-5

Reference£º
Patent; SOLVIAS AG; WO2007/116081; (2007); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Flexible application of (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine in synthetic route

31886-58-5, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,31886-58-5 ,(R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, other downstream synthetic routes, hurry up and to see

The molecularity of an elementary reaction is the number of molecules that collide during that step in the mechanism. If there is only a single reactant molecule in an elementary reaction, that step is designated as unimolecular.31886-58-5, name is (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine. A new synthetic method of this compound is introduced below. , 31886-58-5

(S)-Ugi-amine 1 (5.14g, 20mmol) was dissolved in 50mL of diethyl ether. Under nitrogen and ice salt bath cooling, n-butyl lithium (16mL, 2.5mol / L) was added dropwise to the reaction system, After the completion, the temperature was slowly raised to room temperature, and the reaction was stirred for 3 hours. Chlorodiphenylphosphine (8.82 g, 40 mmol) was added dropwise under ice-cooling, and the mixture was slowly warmed to room temperature and stirred for 12 hours. The reaction was quenched with saturated sodium bicarbonate solution. Extracted with dichloromethane, dried over anhydrous sodium sulfate, concentration, column chromatography to obtain compound 2 (5.38g, 61%).

31886-58-5, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,31886-58-5 ,(R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, other downstream synthetic routes, hurry up and to see

Reference£º
Patent; Zhejiang University of Technology; Zhong Weihui; Ling Fei; Nian Sanfei; (14 pag.)CN108774271; (2018); A;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Derivation of elementary reaction about 31886-58-5

31886-58-5, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,31886-58-5 ,(R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, other downstream synthetic routes, hurry up and to see

31886-58-5, The molecularity of an elementary reaction is the number of molecules that collide during that step in the mechanism. If there is only a single reactant molecule in an elementary reaction, that step is designated as unimolecular.31886-58-5, name is (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine. A new synthetic method of this compound is introduced below.

To a degassed solution of (R)-1 (662 mg, 2.57 mmol) in THF (3.2 mL) was added sec-BuLi (1.4 M in cyclohexane, 2 mL, 2.8 mmol) at 0 C. The resulting deep-red solution was stirred for an additional 3 h at the same temperature. To this reaction mixture was added a solution of ZnBr2 (1.3 M in THF, 2.38 mL, 3.09 mmol) at 0 C and stirring was continued at r.t. for 1 h. To a degassed solution of [Pd2dba3]¡¤CHCl3 (266 mg, 0.257 mmol) and tris(2,4-di-tert-butylphenyl)-phosphite (666 mg, 1.029 mmol) in THF (5.5 mL) was added a degassed solution of sulfide (S)- 4 (890 mg, 2.05 mmol) in THF (3 mL). The resulting dark purple solution was stirred for an additional 10 min at r.t. and was subsequently added dropwise to the previously prepared organozinc compound. The reaction mixture was heated to reflux under argon at 75 C for 18 h, and then cooled to r.t., quenched with H2O and extracted with ethyl acetate (3 ¡Á 200 mL). The combined organic layers were washed with brine (3 ¡Á 200 mL) and dried over MgSO4. The mixture was filtered, the solvent was evaporated and the crude product was purified by column chromatography (silica, PE/EE/NEt3 = 20/10/1). The product (R,SFc,RFc)- 5 was obtained as an orange foam (yield: 687 mg, 59%). M.p.: 58-61 C. 1H NMR (400 MHz, CDCl3): delta 1.37 (d, J = 6.8 Hz, 3H, CH3CH), 1.61 (s, 6H, N(CH3)2), 2.20 (s, 3H, Ph-CH3), 3.65 (q, J = 6.8 Hz, 1H, CH3CH), 4.11 (dd, J1 = 2.4 Hz, J2 = 1.4 Hz, 1H, H3), 4.27 (s, 5H, Cp?), 4.30 (dd, J1 = J2 = 2.4 Hz, 1H, H4), 4.35 (s, 5H, Cp?), 4.37 (dd, J1 = J2 = 2.5 Hz, 1H, H4?) 4.44 (dd, J1 = 2.5 Hz, J2 = 1.5 Hz, 1H, H3? 4.59 (dd, J1 = 2.5 Hz, J2 = 1.5 Hz, 1H, H5? 4.64 (dd, J1 = 2.4 Hz, J2 = 1.4 Hz, 1H, H5), 6.88 (d, J = 8.1 Hz, 2H, Ph-meta), 7.02 (d, J = 8.1 Hz, 2H, Ph-ortho). 13C{1H} NMR (100.6 MHz, CDCl3): delta 14.7 (CH3CH), 20.9 (Ph-CH3), 40.3 (2C, N(CH3)2), 55.4 (CH3CH), 66.1 (C4), 66.7 (C3), 67.9 (C4? 69.6 (5C, Cp’), 70.7 (5C, Cp?), 71.7 (C5? 72.4 (C5), 74.1 (C3? 89.8 (C2), 128.9 (2C, Ph-ortho), 129.1 (2C, Ph-meta), 135.1 (2C, Ph-ipso + Ph-para); 3 Cq (C1, C1? C2? were not observed. HR-MS (EI): m/z [M?]+ calcd. 563.1032 for C31H33Fe2NS; found: 563.1050. [alpha]lambda20 (nm): -660 (589), -746 (578), -1180 (546) (c 0.224, CHCl3).

31886-58-5, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,31886-58-5 ,(R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, other downstream synthetic routes, hurry up and to see

Reference£º
Article; Gross, Manuela A.; Mereiter, Kurt; Wang, Yaping; Weissensteiner, Walter; Journal of Organometallic Chemistry; vol. 716; (2012); p. 32 – 38;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Flexible application of (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine in synthetic route

Thank you very much for taking the time to read this article. If you are also interested in other aspects of (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, CAS: 31886-58-5, you can also browse my other articles.

The molecularity of an elementary reaction is the number of molecules that collide during that step in the mechanism. If there is only a single reactant molecule in an elementary reaction, that step is designated as unimolecular.31886-58-5, name is (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine. A new synthetic method of this compound is introduced below. , 31886-58-5

b) Preparation of L (mixture of diastereomers); To a solution of 5.98 g (23.2 mmol) of (R)-1-dimethylamino-1 -ferrocenylethane in 40 ml of diethyl ether (DE) are added dropwise, at <-10C, 15.5 ml (23.2 mmol) of t-butyllithium (t-BuLi) (1.5 M in pentane). After stirring at the same temperature for 10 minutes, the temperature is allowed to rise to room temperature and the mixture is stirred for another 1.5 hours. This affords a solution of compound X2 which is added via a cannula to the cooled suspension of the monochlorophosphine X1 at a sufficiently slow rate that the temperature does not rise above -300C. After stirring at -300C for a further 10 minutes, the temperature is allowed to rise to 0C and the mixture is stirred at this temperature for another 2 hours. The reaction mixture is admixed with 20 ml of water. The organic phase is removed and dried over sodium sulphate, and the solvent is distilled off under reduced pressure on a rotary evaporator. After chromatographic purification (silica gel 60; eluent = 85:10:5 heptane/ethyl acetate/thethylamine), 11.39 g of the desired product are obtained as a mixture of 2 diastereomers. Thank you very much for taking the time to read this article. If you are also interested in other aspects of (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, CAS: 31886-58-5, you can also browse my other articles. Reference£º
Patent; SPEEDEL EXPERIMENTA AG; WO2008/77917; (2008); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

The effect of the change of 31886-58-5 synthetic route on the product

31886-58-5, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,31886-58-5 ,(R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, other downstream synthetic routes, hurry up and to see

31886-58-5, An elementary termolecular reaction involves the simultaneous collision of three atoms, molecules, or ions.33527-91-2, name is Tris[2-(dimethylamino)ethyl]amine. Here is a downstream synthesis route of the compound 33527-91-2

General procedure: To a solution of (R)-Ugi?s amine 3 (2.57 g, 10 mmol) in TBME (20 mL) was added 1.6 M t-BuLi solution in n-hexane (6.8 mL, 10.88 mmol) at 0 C. After the addition was complete, the mixture was warmed to room temperature, and stirred for 1.5 h at room temperature. The mixture was then cooled to 0 C again, and Ar2PCl (11 mmol) was added in one portion. After stirring for 20 min at 0 C, the mixture was warmed to room temperature, and stirred for 1.5 h at room temperature. The mixture was then quenched by the addition of saturated NaHCO3 solution (20 mL). The organic layer was separated and dried over MgSO4, and the solvent was removed under reduced pressure, after which the filtrate was concentrated. The residue was purified by chromatography to afford 4a, 4e, and 4f.

31886-58-5, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,31886-58-5 ,(R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, other downstream synthetic routes, hurry up and to see

Reference£º
Article; Nie, Huifang; Zhou, Gang; Wang, Quanjun; Chen, Weiping; Zhang, Shengyong; Tetrahedron Asymmetry; vol. 24; 24; (2013); p. 1567 – 1571;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Fun Route: New Discovery of (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine

There are, however, a few established termolecular elementary reactions. The reaction of nitric oxide with oxygen appears to involve termolecular steps. you can also browse my other articles about (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, CAS: 31886-58-5

31886-58-5, Rate laws may be derived directly from the chemical equations for elementary reactions. This is not the case, however, for ordinary chemical reactions.31886-58-5, name is (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, below Introduce a new synthetic route.

(S)-Ugi-amine 1 (2.57 g, 10 mmol) was dissolved in 25 mL of diethyl ether, and n-butyllithium (8 mL, 2.5 mol/L) was added dropwise to the reaction system under nitrogen protection and ice salt bath cooling. After that, the temperature was slowly raised to room temperature, and the reaction was stirred for 3 hours. To the ice salt bath, chlorobis(3,5-di-t-butylphenyl)phosphine (8.90 g, 20 mmol) was added dropwise thereto, and after the completion of the dropwise addition, the mixture was slowly warmed to room temperature, and the reaction was stirred for 24 hours. The reaction was quenched with saturated sodium bicarbonate solution and extracted with dichloromethane. Dry over anhydrous sodium sulfate, Concentration and column chromatography gave product 7 (3.79 g, 57%).

There are, however, a few established termolecular elementary reactions. The reaction of nitric oxide with oxygen appears to involve termolecular steps. you can also browse my other articles about (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, CAS: 31886-58-5

Reference£º
Patent; Zhejiang University of Technology; Zhong Weihui; Ling Fei; Nian Sanfei; (14 pag.)CN108774271; (2018); A;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

The effect of 31886-58-5 reaction temperature change on equilibrium

There are, however, a few established termolecular elementary reactions. The reaction of nitric oxide with oxygen appears to involve termolecular steps. you can also browse my other articles about (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, CAS: 31886-58-5

An elementary termolecular reaction involves the simultaneous collision of three atoms, molecules, or ions.31886-58-5, name is (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine. Here is a downstream synthesis route of the compound 31886-58-5, 31886-58-5

For a preparation of Ugi amine 7 refer to Marquarding, D. et al., J. Am. Chem. Soc. 1970, 92, 5389.In a 200 ml schlenk tube, Ugi amine 7 (4 g, 15 mmol) was dissolved in Et2O (50 ml) at room temperature, n-BuLi (12 ml, 30 mmol) was added to the mixture at that temperature and stirred overnight under an inert atmosphere. The reaction mixture was cooled to -78C and Iodine (9.52 g, 37.5 mmol) dissolved in THF (60 ml) was added over the course of 10 min. The reaction was stirred at -78C for 90 min before allowing to warm to room temperature, at which point it was allowed to stirred for an additional 90 min before quenching at 0C with sodium thiosulfate(aq)(50 ml, 25% w/v). Dilute with Et2O (30 ml), the layers were separated and the aqueous layer was further extracted with ether (50 ml x 3). The combined organic fractions were dried over MgSO4solvent remove in vacuo and purified via flash column chromatography (5% MeOH, 5% TEA in DCM) to yield product (3.18 g, 55%).1H NMR (400 MHz, CDCl3) delta 4.46 (dd, J = 2.4, 1.4 Hz, 1 H), 4.24 (t, J = 2.6 Hz, 1 H), 4.15 (dd, J = 2.7, 1.3 Hz, 1 H), 4.12 (s, 5H), 3.62 (q, J = 6.8 Hz, 1 H), 2.15 (s, 6H), 1.50 (d, J = 6.8 Hz, 3H).13C NMR (101 MHz, CDCl3) delta 90.21 (ipso Cp), 74.32 (Fc), 71.67 (Fc), 68.19 (Fc), 65.59 (Fc), 57.59 (CH*), 45.49 (ipso Cp), 41.22 (CH3), 16.01 (CH3). MS (ES) (m/z) calcd for d4H18N56Fel 382.9833, found 382.9820. IR (cm-1): 3078 (=C-H), 2931 (CH2), 2878 (CH2), 2809 (CH2), 1446 (CH3), 1371 (CH3), 1243, 1087, 821 (CH=CH), 732 (CH Ar). Mp: melt at 58C-60C. aD(c = 0.0022 g/ml, DCM) = +7.3.

There are, however, a few established termolecular elementary reactions. The reaction of nitric oxide with oxygen appears to involve termolecular steps. you can also browse my other articles about (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, CAS: 31886-58-5

Reference£º
Patent; THE UNIVERSITY OF BIRMINGHAM; TSELEPIS, Chris; TUCKER, James; NGUYEN, Huy Van; HODGES, Nikolas John; MEHELLOU, Youcef; WO2015/92432; (2015); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Flexible application of (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine in synthetic route

31886-58-5, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,31886-58-5 ,(R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, other downstream synthetic routes, hurry up and to see

31886-58-5, Rate laws may be derived directly from the chemical equations for elementary reactions. This is not the case, however, for ordinary chemical reactions.31886-58-5, name is (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, below Introduce a new synthetic route.

a) Preparation of the chlorophosphine (X3)3.85 ml (5 mmol) of S-BuLi (1.3 M in cyclohexane) are added dropwise to a solution of 1.29 g (5 mmol) of (R)-1-dimethylamino-1-ferrocenylethane in 5 ml of TBME at <-20C. After stirring the mixture at the same temperature for 10 minutes, the temperature is allowed to rise to room temperature and the mixture is stirred for another 1.5 hours. The reaction mixture is then cooled to -78C and 0.62 ml (5 mmol) of dichloroisopropylphosphine is added dropwise at such a rate that the temperature does not exceed -60C. Further stirring at -78C for 30 minutes and subsequently at room temperature for one hour gives a suspension comprising the chlorophosphine X3; Example B17: Preparation of the compound (Rc,SFc,SP)-1-[2-(1-dimethylaminoethyl)ferrocen- i-yllcyclohexylphosphino-i '-bis-beta.S-d^trifluoromethylJphenyllphosphinoferrocene (B17):4 ml (10 mmol) of n-BuLi (2.5 M in hexane) are added dropwise to a solution of 3.44 g (10 mmol) of 1 ,1 '-dibromoferrocene in 10 ml of tetrahydrofuran (THF) at a temperature of < -30C. The mixture is stirred at this temperature for a further 1.5 hours to give a suspension of 1-bromo-1 '-lithioferrocene X5.In a second reaction vessel, 7.7 ml (10 mmol) of S-BuLi (1.3 M in cyclohexane) are added dropwise to a solution of 2.57 g (10 mmol) of (R)-1-dimethylamino-1-ferrocenylethane in 15 ml of TBME at <-10C. After stirring the mixture at the same temperature for 10 minutes, the temperature is allowed to rise to 0 and the mixture is stirred for another 1.5 hours. The reaction mixture is then cooled to -78C and 1.51 ml (10 mmol) of dichlorocyclohexyl- phosphine are added. Further stirring at -78C for 30 minutes and, after removal of cooling, at room temperature for another one hour gives a suspension of the chlorophosphine X4 which is subsequently added at a temperature of <-10C to the suspension of 1-bromo-1 '-lithio- ferrocene X5. The cooling is then removed and the mixture is stirred at room temperature for a further 1.5 hours. After renewed cooling to <-50C, 4 ml (10 mmol) of n-BuLi (2.5 M in hexane) are added dropwise. After the addition, the temperature is allowed to rise to 0C and the mixture is stirred for a further 30 minutes. It is then cooled to -20C and 4.63 g (10 mmol) of bis[3,5-di(trifluoromethyl)phenyl]chlorophosphine are added. The cooling is subsequently removed and the mixture is stirred at room temperature for another 1.5 hours. The reaction mixture is admixed with 1 N NaOH and extracted. The organic phase is dried over sodium sulphate and the solvent is distilled off under reduced pressure on a rotary evaporator. The residue is subsequently heated at 150C for one hour. Chromatographic purification (silica gel 60; eluent = hexane/ethyl acetate 8:1 ) gives the compound B17 as a yellow solid (yield: 66%). 1H NMR (300 MHz, C6D6): delta 1.25 (d, 3H, J = 6.7 Hz), 1.00-2.29 (m, 1 1 H), 2.20 (s, 6H), 3.78 (m, 1 H), 4.02 (m, 1 H), 4.04 (s, 5H), 4.09 (m, 1 H), 4.14 (m, 1 H), 4.17 (m, 1 H), 4.21 (m, 1 H), 4.40 (m, 2H), 4.60 (m, 1 H), 7.80 (d, 2H, J = 6.8 Hz), 8.00 (d, 4H, J = 6.0 Hz). 31P NMR (121.5 MHz, C6D6): delta -27.1 (s); -14.1 (s).

31886-58-5, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,31886-58-5 ,(R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, other downstream synthetic routes, hurry up and to see

Reference£º
Patent; SOLVIAS AG; WO2007/116081; (2007); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Some scientific research about 31886-58-5

The chemical industry reduces the impact on the environment during synthesis,31886-58-5,(R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine,I believe this compound will play a more active role in future production and life.

Name is (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, as a common heterocyclic compound, it belongs to chiral-nitrogen-ligands compound, and cas is 31886-58-5, its synthesis route is as follows.

General procedure: To a solution of (R)-Ugi?s amine 3 (2.57 g, 10 mmol) in TBME (20 mL) was added 1.6 M t-BuLi solution in n-hexane (6.8 mL, 10.88 mmol) at 0 C. After the addition was complete, the mixture was warmed to room temperature, and stirred for 1.5 h at room temperature. The mixture was then cooled to 0 C again, and Ar2PCl (11 mmol) was added in one portion. After stirring for 20 min at 0 C, the mixture was warmed to room temperature, and stirred for 1.5 h at room temperature. The mixture was then quenched by the addition of saturated NaHCO3 solution (20 mL). The organic layer was separated and dried over MgSO4, and the solvent was removed under reduced pressure, after which the filtrate was concentrated. The residue was purified by chromatography to afford 4a, 4e, and 4f.

The chemical industry reduces the impact on the environment during synthesis,31886-58-5,(R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine,I believe this compound will play a more active role in future production and life.

Reference£º
Article; Nie, Huifang; Zhou, Gang; Wang, Quanjun; Chen, Weiping; Zhang, Shengyong; Tetrahedron Asymmetry; vol. 24; 24; (2013); p. 1567 – 1571;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

The effect of 31886-58-5 reaction temperature change on equilibrium

There are, however, a few established termolecular elementary reactions. The reaction of nitric oxide with oxygen appears to involve termolecular steps. you can also browse my other articles about (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, CAS: 31886-58-5

31886-58-5, Rate laws may be derived directly from the chemical equations for elementary reactions. This is not the case, however, for ordinary chemical reactions.31886-58-5, name is (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, below Introduce a new synthetic route.

General procedure: To a solution of (R)-Ugi?s amine 3 (2.57 g, 10 mmol) in TBME (20 mL) was added 1.6 M t-BuLi solution in n-hexane (6.8 mL, 10.88 mmol) at 0 C. After the addition was complete, the mixture was warmed to room temperature, and stirred for 1.5 h at room temperature. The mixture was then cooled to 0 C again, and Ar2PCl (11 mmol) was added in one portion. After stirring for 20 min at 0 C, the mixture was warmed to room temperature, and stirred for 1.5 h at room temperature. The mixture was then quenched by the addition of saturated NaHCO3 solution (20 mL). The organic layer was separated and dried over MgSO4, and the solvent was removed under reduced pressure, after which the filtrate was concentrated. The residue was purified by chromatography to afford 4a, 4e, and 4f.

There are, however, a few established termolecular elementary reactions. The reaction of nitric oxide with oxygen appears to involve termolecular steps. you can also browse my other articles about (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, CAS: 31886-58-5

Reference£º
Article; Nie, Huifang; Zhou, Gang; Wang, Quanjun; Chen, Weiping; Zhang, Shengyong; Tetrahedron Asymmetry; vol. 24; 24; (2013); p. 1567 – 1571;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis