Analyzing the synthesis route of 31886-58-5

With the synthetic route has been constantly updated, we look forward to future research findings about (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine,belong chiral-nitrogen-ligands compound

As a common heterocyclic compound, it belong chiral-nitrogen-ligands compound,(R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine,31886-58-5,Molecular formula: C14H19FeN,mainly used in chemical industry, its synthesis route is as follows.,31886-58-5

15.4 ml of a cyclohexane solution of s-butyllithium (1.3 M, 22 mmol) are added to a solution of 5.14 g (20 mmol) of (R)-N, N-dimethyl-1 -ferrocenylethylamine [(R)-ugi- amine] in 30 ml of t-butyl methyl ether (TBME) at -78C over a period of 10 minutes. The mixture is then heated to room temperature while stirring and maintained at this temperature for 1.5 hours. It is then cooled back down to -78 0C and 2.71 ml(20 mmol) of dichlorophenylphosphine are added over a period of 10 minutes. After stirring at -78C for 10 minutes, the mixture is allowed to warm slowly to room temperature and is stirred at this temperature for 1.5 hours.

With the synthetic route has been constantly updated, we look forward to future research findings about (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine,belong chiral-nitrogen-ligands compound

Reference£º
Patent; SOLVIAS AG; WO2008/55942; (2008); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

The important role of 31886-58-5

With the complex challenges of chemical substances, we look forward to future research findings about (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine

Name is (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, as a common heterocyclic compound, it belongs to chiral-nitrogen-ligands compound, and cas is 31886-58-5, its synthesis route is as follows.,31886-58-5

To a degassed solution of (R)-1 (662 mg, 2.57 mmol) in THF (3.2 mL) was added sec-BuLi (1.4 M in cyclohexane, 2 mL, 2.8 mmol) at 0 C. The resulting deep-red solution was stirred for an additional 3 h at the same temperature. To this reaction mixture was added a solution of ZnBr2 (1.3 M in THF, 2.38 mL, 3.09 mmol) at 0 C and stirring was continued at r.t. for 1 h. To a degassed solution of [Pd2dba3]¡¤CHCl3 (266 mg, 0.257 mmol) and tris(2,4-di-tert-butylphenyl)-phosphite (666 mg, 1.029 mmol) in THF (5.5 mL) was added a degassed solution of sulfide (S)- 4 (890 mg, 2.05 mmol) in THF (3 mL). The resulting dark purple solution was stirred for an additional 10 min at r.t. and was subsequently added dropwise to the previously prepared organozinc compound. The reaction mixture was heated to reflux under argon at 75 C for 18 h, and then cooled to r.t., quenched with H2O and extracted with ethyl acetate (3 ¡Á 200 mL). The combined organic layers were washed with brine (3 ¡Á 200 mL) and dried over MgSO4. The mixture was filtered, the solvent was evaporated and the crude product was purified by column chromatography (silica, PE/EE/NEt3 = 20/10/1). The product (R,SFc,RFc)- 5 was obtained as an orange foam (yield: 687 mg, 59%). M.p.: 58-61 C. 1H NMR (400 MHz, CDCl3): delta 1.37 (d, J = 6.8 Hz, 3H, CH3CH), 1.61 (s, 6H, N(CH3)2), 2.20 (s, 3H, Ph-CH3), 3.65 (q, J = 6.8 Hz, 1H, CH3CH), 4.11 (dd, J1 = 2.4 Hz, J2 = 1.4 Hz, 1H, H3), 4.27 (s, 5H, Cp?), 4.30 (dd, J1 = J2 = 2.4 Hz, 1H, H4), 4.35 (s, 5H, Cp?), 4.37 (dd, J1 = J2 = 2.5 Hz, 1H, H4?) 4.44 (dd, J1 = 2.5 Hz, J2 = 1.5 Hz, 1H, H3? 4.59 (dd, J1 = 2.5 Hz, J2 = 1.5 Hz, 1H, H5? 4.64 (dd, J1 = 2.4 Hz, J2 = 1.4 Hz, 1H, H5), 6.88 (d, J = 8.1 Hz, 2H, Ph-meta), 7.02 (d, J = 8.1 Hz, 2H, Ph-ortho). 13C{1H} NMR (100.6 MHz, CDCl3): delta 14.7 (CH3CH), 20.9 (Ph-CH3), 40.3 (2C, N(CH3)2), 55.4 (CH3CH), 66.1 (C4), 66.7 (C3), 67.9 (C4? 69.6 (5C, Cp’), 70.7 (5C, Cp?), 71.7 (C5? 72.4 (C5), 74.1 (C3? 89.8 (C2), 128.9 (2C, Ph-ortho), 129.1 (2C, Ph-meta), 135.1 (2C, Ph-ipso + Ph-para); 3 Cq (C1, C1? C2? were not observed. HR-MS (EI): m/z [M?]+ calcd. 563.1032 for C31H33Fe2NS; found: 563.1050. [alpha]lambda20 (nm): -660 (589), -746 (578), -1180 (546) (c 0.224, CHCl3).

With the complex challenges of chemical substances, we look forward to future research findings about (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine

Reference£º
Article; Gross, Manuela A.; Mereiter, Kurt; Wang, Yaping; Weissensteiner, Walter; Journal of Organometallic Chemistry; vol. 716; (2012); p. 32 – 38;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

The important role of 31886-58-5

With the complex challenges of chemical substances, we look forward to future research findings about (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine

Name is (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, as a common heterocyclic compound, it belongs to chiral-nitrogen-ligands compound, and cas is 31886-58-5, its synthesis route is as follows.,31886-58-5

General procedure: To a solution of (R)-Ugi?s amine 3 (2.57 g, 10 mmol) in TBME (20 mL) was added 1.6 M t-BuLi solution in n-hexane (6.8 mL, 10.88 mmol) at 0 C. After the addition was complete, the mixture was warmed to room temperature, and stirred for 1.5 h at room temperature. The mixture was then cooled to 0 C again, and Ar2PCl (11 mmol) was added in one portion. After stirring for 20 min at 0 C, the mixture was warmed to room temperature, and stirred for 1.5 h at room temperature. The mixture was then quenched by the addition of saturated NaHCO3 solution (20 mL). The organic layer was separated and dried over MgSO4, and the solvent was removed under reduced pressure, after which the filtrate was concentrated. The residue was purified by chromatography to afford 4a, 4e, and 4f.

With the complex challenges of chemical substances, we look forward to future research findings about (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine

Reference£º
Article; Nie, Huifang; Zhou, Gang; Wang, Quanjun; Chen, Weiping; Zhang, Shengyong; Tetrahedron Asymmetry; vol. 24; 24; (2013); p. 1567 – 1571;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Some tips on (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine

With the complex challenges of chemical substances, we look forward to future research findings about 31886-58-5,belong chiral-nitrogen-ligands compound

As a common heterocyclic compound, it belongs to chiral-nitrogen-ligands compound, name is (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, and cas is 31886-58-5, its synthesis route is as follows.,31886-58-5

Weigh I (5.0g, 19.4mmol) in 100mL reaction flask, dissolved with 50.0mL of ether, Sec-butyllithium (44.9 mL, 58.3 mmol, 1.3 M) was added dropwise to the reaction flask under nitrogen atmosphere, Stirred at room temperature for 2h, Weigh diphenylphosphine chloride (4.2mL, 23.3mmol) was added dropwise to the reaction flask, Warmed to reflux, 4h after the reaction is completed, The reaction solution was poured into water to quench, Extraction with ethyl acetate, drying, Ethyl acetate was removed by rotary evaporation, Purification by column chromatography on residue gave 7.5 g of the target compound VIII, Yield: 87.4%, yellow solid. Mass spectral analysis MALDI-TOF-MS m / z: 441 (M +).

With the complex challenges of chemical substances, we look forward to future research findings about 31886-58-5,belong chiral-nitrogen-ligands compound

Reference£º
Patent; Shanghai Maosheng Kanghui Technology Co., Ltd.; Jiang Xuefeng; Ying Yongcheng; Teng Haige; Chen Pei; (20 pag.)CN107286202; (2017); A;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Some tips on (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine

With the complex challenges of chemical substances, we look forward to future research findings about 31886-58-5,belong chiral-nitrogen-ligands compound

As a common heterocyclic compound, it belongs to chiral-nitrogen-ligands compound, name is (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, and cas is 31886-58-5, its synthesis route is as follows.,31886-58-5

4.0 ml (5.2 mmol) of S-BuLi (1.3 M in cyclohexanone) are added dropwise at -78C with stirring to a solution of 1.29 g (5 mmol) of compound 15 in 5 ml of TBME. The temperature is then allowed to rise to room temperature and the mixture is stirred further for 1.5 h. The resulting suspension is then injected with elevated pressure (argon) through a cannula into a second vessel in which a solution of 0.44 ml (5 mmol) of PCI3 in 10 ml of TBME is stirred at -78C. After the addition, the temperature is allowed to rise to 00C, and the resulting suspension is stirred further for another 1.5 hours. After adding 10 ml of THF, reaction solution 1 comprising compound 16 is obtained.

With the complex challenges of chemical substances, we look forward to future research findings about 31886-58-5,belong chiral-nitrogen-ligands compound

Reference£º
Patent; Solvias AG; WO2007/135179; (2007); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Share a compound : 31886-58-5

With the rapid development of chemical substances, we look forward to future research findings about (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine

(R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, cas is 31886-58-5, it is a common heterocyclic compound, the chiral-nitrogen-ligands compound, its synthesis route is as follows.,31886-58-5

The compound having the structure shown in formula (VI) of FIG. 4 was made using the scheme set forth in FIG. 2. Referring to FIG. 2, alpha-Dimethylaminoethylferrocene (as Compound 1) (0.52 g, 2.03 mmol) was dissolved in diethyl ether (8.3 ml). Next, sec-butyl lithium (2.0 ml, 1.4 M solution, 1.36 eq) was added and the mixture was stirred at room temperature overnight. Chlorobis[3,5-bis(trifluoromethyl)phenyl]phosphine (1.0 g, 2.03 mmol, 1.0 eq) in diethyl ether (1.7 ml) was added dropwise and the solution was refluxed for 5 hours. An aqueous solution saturated with sodium bicarbonate (15 ml) was added. The layers were separated and the aqueous layer washed with diethyl ether (2¡Á6 ml). The separated organic layer was combined with the diethyl ether washings and dried over magnesium sulfate. The solution was concentrated under vacuum and purified by column chromatography on alumina using 30:1 hexane:ethyl acetate as eluent. This resulted in an orange oil containing Compound 2 (0.60 g, 0.84 mmol, 41%).

With the rapid development of chemical substances, we look forward to future research findings about (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine

Reference£º
Patent; Eastman Chemical Company; How, Rebecca; Clarke, Matt; Hembre, Robert Thomas; Ponasik, James A.; Tolleson, Ginette S.; (17 pag.)US9308527; (2016); B2;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

New learning discoveries about 31886-58-5

The synthetic route of 31886-58-5 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.31886-58-5,(R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine,as a common compound, the synthetic route is as follows.,31886-58-5

EXAMPLE A2; Preparation of (RC,SFc,SP)-1-[2-(1-dimethylaminoethyl)ferrocen-1-yl]cyclo-hexylphosphino-1′-bromoferrocene of the formula (A2) [Cy=cyclohexyl; Me=methyl]; a) Preparation of the Monochlorophosphine X4; 1.3 M s-BuLi solution in cyclohexane (7.7 ml, 10 mmol) is added to a solution of (R)-N,N-dimethyl-1-ferrocenylethylamine[(R)-Ugi amine] (2.57 g, 10 mmol) in TBME (15 ml) over a period of 10 minutes and at a temperature below -20 C. After the addition is complete, the reaction mixture is warmed to 0 C. and stirred at this temperature for 1.5 hours. Dichlorocyclohexylphosphine (1.51 ml, 10 mmol) is then added at a temperature below -60 C. over a period of 10 minutes. The mixture is then stirred at -78 C. for another 30 minutes, the cooling bath is removed, the reaction mixture is stirred for a further one hour. This gives the monochlorophosphine X4.; EXAMPLE 1; Preparation of [(RC,RC,)(SFc,SFc,)(SP,SP)-1-[2-(1-dimethylaminoethyl)ferrocenyl]phenylphosphino-1′-[2-(1-dimethylaminoethyl)ferrocenyl]cyclohexylphosphinoferrocene of the formula (B1) [R=phenyl; Me=methyl, R’=cyclohexyl]; Reaction mixture a) 1.3 M s-BuLi solution in cyclohexane (3.85 ml, 5 mmol) is added to a solution of (R)-N,N-dimethyl-1-ferrocenylethylamine[(R)-Ugi amine] (1.28 g, 5 mmol) in TBME (10 ml) over a period of 10 minutes and at a temperature below -20 C. After the addition is complete, the reaction mixture is warmed to 0 C. and stirred at this temperature for another 1.5 hours. Dichlorocyclohexylphosphine (0.76 ml, 5 mmol) is then added at a temperature below -60 C. over a period of 10 minutes. The reaction mixture is then stirred at -78 C. for another 30 minutes, the cooling bath is removed and the reaction mixture is stirred for a further one hour to give the monochlorophosphine X7.; EXAMPLE 3; Preparation of [(RC,RC,)(SFc,SFc,)(SP,SP)-1-[2-(1-dimethylaminoethyl)-ferrocenyl]phenylphosphino-1′-[2-(1-dimethylaminoethyl)ferrocenyl]cyclohexyl-phosphinoferrocene of the formula (B1) [R=phenyl; Me=methyl, R’=cyclohexyl]; a) 1.3 M s-BuLi solution in cyclohexane (3.85 ml, 5 mmol) is added to a solution of (R)-N,N-dimethyl-1-ferrocenylethylamine[(R)-Ugi amine] (1.28 g, 5 mmol) in TBME (10 ml) over a period of 10 minutes and at a temperature below -20 C. After the addition is complete, the reaction mixture is warmed to 0 C. and stirred at this temperature for another 1.5 hours. This gives the lithiated Ugi amine X9.; EXAMPLE 4; Preparation of [(RC,RC,)(SFc,SFc,)(SP,SP)-1-[2-[(1-dimethylaminoethyl)-ferrocenyl]phenylphosphino-1′-[2-(1-dimethylaminoethyl)ferrocenyl]isopropyl-phosphinoferrocene of the formula (B2) [R=phenyl; Me=methyl, R’=isopropyl]; a) 1.3 M s-BuLi solution in cyclohexane (3.08 ml, 4 mmol) is added to a solution of (R)-N,N-dimethyl-1-ferrocenylethylamine[(R)-Ugi amine] (1.03 g, 4 mmol) in TBME (10 ml) over a period of 10 minutes and at a temperature below -20 C. After the addition is complete, the reaction mixture is warmed to 0 C. and stirred at this temperature for another 1.5 hours. This gives the lithiated Ugi amine X9.; b) In a vessel, 7.7 ml (10 mmol) of s-BuLi (1.3 M in cyclohexane) are added to a solution of (R)-N,N-dimethyl-1-ferrocenylethylamine[(R)-Ugi amine] (2.57 g, 10 mmol) in TBME (15 ml) at a temperature below -20 C. over a period of 10 minutes. After the addition is complete, the reaction mixture is warmed to 0 C. and stirred at this temperature for another 1.5 hours. Dichloroisopropylphosphine (1.23 ml, 10 mmol) is then added at a temperature below -60 C. over a period of 10 minutes. The mixture is then stirred at -78 C. for another 30 minutes, the cooling bath is removed and the reaction mixture is stirred for a further one hour. This gives the monochlorophosphine X8.; EXAMPLE ; Preparation of [(RC,RC),(SFc,SFc),(SP,SP)]-1-[2-(1-N,N-dimethylamino-ethyl)-1-ferrocenyl](4-methoxyphenyl)phosphino-1′-[2-(1-N,N-dimethylaminoethyl)-1-ferrocenyl]cyclohexylphosphinoferrocene of the formula (B6); Reaction mixture a): 7.7 ml (10 mmol) of s-BuLi (1.3 M in cyclohexane) are added dropwise to a cooled solution of 2.57 g (10 mmol) of (R)-N,N-dimethyl-1-ferrocenyl-ethylamine [(R)-Ugi amine] in TBME (15 ml) at such a rate that the temperature remains below -20 C. After the addition, the temperature is allowed to rise to 0 C. and the mixture is stirred at this temperature for another 1.5 hours. The mixture is then cooled to -78 C. and 1.52 ml (10 mmol) of cyclohexyldichlorophosphine are added dropwise at such a rate that the temperature does not exceed -60 C. The mixture is stirred at -78 C. for a further 30 minutes, the cooling is then removed and the suspension containing the monochlorophosphine (RC,SFc)-[2-(1-N,N-dimethylamino-ethyl)-1-ferrocenyl]cyclohexylchlorophosphine is stirred for a further 1 hour.; Reaction mixture d): 7.7 ml (10 mmol) of s-BuLi (1.3 M in cyclohexane) are added dropwise to a cooled solution of (R)-N,N-dimethyl-1-ferrocenylethylamine[(R)-Ugi amine] (2.57 g, 10 mmol) in TBME (15 ml) at such a rate th…

The synthetic route of 31886-58-5 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; Chen, Weiping; Spindler, Felix; Nettekoven, Ulrike; Pugin, Benoit; US2010/160660; (2010); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

New learning discoveries about 31886-58-5

With the rapid development of chemical substances, we look forward to future research findings about (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine

(R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, cas is 31886-58-5, it is a common heterocyclic compound, the chiral-nitrogen-ligands compound, its synthesis route is as follows.,31886-58-5

a) Preparation of the chlorophosphine (X3)3.85 ml (5 mmol) of S-BuLi (1.3 M in cyclohexane) are added dropwise to a solution of 1.29 g (5 mmol) of (R)-1-dimethylamino-1-ferrocenylethane in 5 ml of TBME at <-20C. After stirring the mixture at the same temperature for 10 minutes, the temperature is allowed to rise to room temperature and the mixture is stirred for another 1.5 hours. The reaction mixture is then cooled to -78C and 0.62 ml (5 mmol) of dichloroisopropylphosphine is added dropwise at such a rate that the temperature does not exceed -60C. Further stirring at -78C for 30 minutes and subsequently at room temperature for one hour gives a suspension comprising the chlorophosphine X3; Example B17: Preparation of the compound (Rc,SFc,SP)-1-[2-(1-dimethylaminoethyl)ferrocen- i-yllcyclohexylphosphino-i '-bis-beta.S-d^trifluoromethylJphenyllphosphinoferrocene (B17):4 ml (10 mmol) of n-BuLi (2.5 M in hexane) are added dropwise to a solution of 3.44 g (10 mmol) of 1 ,1 '-dibromoferrocene in 10 ml of tetrahydrofuran (THF) at a temperature of < -30C. The mixture is stirred at this temperature for a further 1.5 hours to give a suspension of 1-bromo-1 '-lithioferrocene X5.In a second reaction vessel, 7.7 ml (10 mmol) of S-BuLi (1.3 M in cyclohexane) are added dropwise to a solution of 2.57 g (10 mmol) of (R)-1-dimethylamino-1-ferrocenylethane in 15 ml of TBME at <-10C. After stirring the mixture at the same temperature for 10 minutes, the temperature is allowed to rise to 0 and the mixture is stirred for another 1.5 hours. The reaction mixture is then cooled to -78C and 1.51 ml (10 mmol) of dichlorocyclohexyl- phosphine are added. Further stirring at -78C for 30 minutes and, after removal of cooling, at room temperature for another one hour gives a suspension of the chlorophosphine X4 which is subsequently added at a temperature of <-10C to the suspension of 1-bromo-1 '-lithio- ferrocene X5. The cooling is then removed and the mixture is stirred at room temperature for a further 1.5 hours. After renewed cooling to <-50C, 4 ml (10 mmol) of n-BuLi (2.5 M in hexane) are added dropwise. After the addition, the temperature is allowed to rise to 0C and the mixture is stirred for a further 30 minutes. It is then cooled to -20C and 4.63 g (10 mmol) of bis[3,5-di(trifluoromethyl)phenyl]chlorophosphine are added. The cooling is subsequently removed and the mixture is stirred at room temperature for another 1.5 hours. The reaction mixture is admixed with 1 N NaOH and extracted. The organic phase is dried over sodium sulphate and the solvent is distilled off under reduced pressure on a rotary evaporator. The residue is subsequently heated at 150C for one hour. Chromatographic purification (silica gel 60; eluent = hexane/ethyl acetate 8:1 ) gives the compound B17 as a yellow solid (yield: 66%). 1H NMR (300 MHz, C6D6): delta 1.25 (d, 3H, J = 6.7 Hz), 1.00-2.29 (m, 1 1 H), 2.20 (s, 6H), 3.78 (m, 1 H), 4.02 (m, 1 H), 4.04 (s, 5H), 4.09 (m, 1 H), 4.14 (m, 1 H), 4.17 (m, 1 H), 4.21 (m, 1 H), 4.40 (m, 2H), 4.60 (m, 1 H), 7.80 (d, 2H, J = 6.8 Hz), 8.00 (d, 4H, J = 6.0 Hz). 31P NMR (121.5 MHz, C6D6): delta -27.1 (s); -14.1 (s).

With the rapid development of chemical substances, we look forward to future research findings about (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine

Reference£º
Patent; SOLVIAS AG; WO2007/116081; (2007); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

New learning discoveries about 31886-58-5

With the rapid development of chemical substances, we look forward to future research findings about (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine

(R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, cas is 31886-58-5, it is a common heterocyclic compound, the chiral-nitrogen-ligands compound, its synthesis route is as follows.,31886-58-5

For a preparation of Ugi amine 7 refer to Marquarding, D. et al., J. Am. Chem. Soc. 1970, 92, 5389.In a 200 ml schlenk tube, Ugi amine 7 (4 g, 15 mmol) was dissolved in Et2O (50 ml) at room temperature, n-BuLi (12 ml, 30 mmol) was added to the mixture at that temperature and stirred overnight under an inert atmosphere. The reaction mixture was cooled to -78C and Iodine (9.52 g, 37.5 mmol) dissolved in THF (60 ml) was added over the course of 10 min. The reaction was stirred at -78C for 90 min before allowing to warm to room temperature, at which point it was allowed to stirred for an additional 90 min before quenching at 0C with sodium thiosulfate(aq)(50 ml, 25% w/v). Dilute with Et2O (30 ml), the layers were separated and the aqueous layer was further extracted with ether (50 ml x 3). The combined organic fractions were dried over MgSO4solvent remove in vacuo and purified via flash column chromatography (5% MeOH, 5% TEA in DCM) to yield product (3.18 g, 55%).1H NMR (400 MHz, CDCl3) delta 4.46 (dd, J = 2.4, 1.4 Hz, 1 H), 4.24 (t, J = 2.6 Hz, 1 H), 4.15 (dd, J = 2.7, 1.3 Hz, 1 H), 4.12 (s, 5H), 3.62 (q, J = 6.8 Hz, 1 H), 2.15 (s, 6H), 1.50 (d, J = 6.8 Hz, 3H).13C NMR (101 MHz, CDCl3) delta 90.21 (ipso Cp), 74.32 (Fc), 71.67 (Fc), 68.19 (Fc), 65.59 (Fc), 57.59 (CH*), 45.49 (ipso Cp), 41.22 (CH3), 16.01 (CH3). MS (ES) (m/z) calcd for d4H18N56Fel 382.9833, found 382.9820. IR (cm-1): 3078 (=C-H), 2931 (CH2), 2878 (CH2), 2809 (CH2), 1446 (CH3), 1371 (CH3), 1243, 1087, 821 (CH=CH), 732 (CH Ar). Mp: melt at 58C-60C. aD(c = 0.0022 g/ml, DCM) = +7.3.

With the rapid development of chemical substances, we look forward to future research findings about (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine

Reference£º
Patent; THE UNIVERSITY OF BIRMINGHAM; TSELEPIS, Chris; TUCKER, James; NGUYEN, Huy Van; HODGES, Nikolas John; MEHELLOU, Youcef; WO2015/92432; (2015); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis

Share a compound : 31886-58-5

As the rapid development of chemical substances, we look forward to future research findings about 31886-58-5

(R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, cas is 31886-58-5, it is a common heterocyclic compound, the chiral-nitrogen-ligands compound, its synthesis route is as follows.,31886-58-5

(S)-Ugi-amine 1 (5.14g, 20mmol) was dissolved in 50mL of diethyl ether. Under nitrogen and ice salt bath cooling, n-butyl lithium (16mL, 2.5mol / L) was added dropwise to the reaction system, After the completion, the temperature was slowly raised to room temperature, and the reaction was stirred for 3 hours. Chlorodiphenylphosphine (8.82 g, 40 mmol) was added dropwise under ice-cooling, and the mixture was slowly warmed to room temperature and stirred for 12 hours. The reaction was quenched with saturated sodium bicarbonate solution. Extracted with dichloromethane, dried over anhydrous sodium sulfate, concentration, column chromatography to obtain compound 2 (5.38g, 61%).

As the rapid development of chemical substances, we look forward to future research findings about 31886-58-5

Reference£º
Patent; Zhejiang University of Technology; Zhong Weihui; Ling Fei; Nian Sanfei; (14 pag.)CN108774271; (2018); A;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis