With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.110-70-3,N1,N2-Dimethylethane-1,2-diamine,as a common compound, the synthetic route is as follows.
36.2 g (0.40 mol) acrylic acid chloride and 16 mg MEHQ were dissolved in 600 ml methylene chloride in a 1.5-l sulphonation flask and cooled to -5 C. Then, a mixture of 17.6 g (0.20 mol) N,N’-dimethylethylenediamine, 40.8 g (0.40 mol) triethylamine and 400 ml methylene chloride was added dropwise accompanied by stirring so that the temperature remained between -5 and 0 C. After 1.5 h stirring, the mixture was allowed to warm up to room temperature, stirred overnight, the precipitate formed was filtered off and the filtrate concentrated under vacuum. The raw product was taken up in 150 ml acetone, filtered through a frit with 50 g silica gel 60 and concentrated again. After repeating this process, 30.1 g (77% yield) of a light yellow liquid remained. 1H-NMR (400 MHz, CDCl3): delta=3.10 and 3.14 (s; 2*3H, CH3), 3.54-3.67 (2m; 4H, CH2N), 5.68, 6.35 and 6.56 (m; 3*2H, CH=CH2) ppm.
110-70-3 N1,N2-Dimethylethane-1,2-diamine 8070, achiral-nitrogen-ligands compound, is more and more widely used in various.
Reference£º
Patent; Ivoclar Vivadent AG; US6953832; (2005); B2;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis