The effect of 33527-91-2 reaction temperature change on equilibrium

This molecular description is the mechanism of the reaction; it describes how individual atoms, ions, or molecules interact to form particular products.If you are interested, you can also browse other articles of 33527-91-2, We look forward to the emergence of more reaction modes in the future.

33527-91-2, Rate laws may be derived directly from the chemical equations for elementary reactions. This is not the case, however, for ordinary chemical reactions.33527-91-2, name is Tris[2-(dimethylamino)ethyl]amine, below Introduce a new synthetic route.

Embodiment 5Production of [Cu(Me6tren)]BPh4 0.20 g (0.87 mmol) Me6tren (1) was dissolved in approx. 2 ml acetone and a solution of 0.30 g (0.81 mmol) [Cu(CH3CN)4]PF6 (tetrakis(acetonitrile)copper(I)-hexafluorophosphate) in approx. 4 ml acetone was added slowly under constant stirring. A solution of 0.28 g (0.82 mmol) NaBPh4 (sodium tetraphenylborate) in approx. 2 mL acetone was added subsequently to the colorless, complex solution thus obtained, for the replacement of anions. For the preparation of the solid, the complex solution was added to 20 ml diethylether. The voluminous solid of [Cu(Me6tren)]BPh4 (10) obtained was dried in vacuum. 0.48 g (96.6%) of a colorless powder was obtained as the product.All work was carried out in an argon box. It is possible, however, to carry out all work with the Schlenk technique under argon or nitrogen as well.The complex [Cu(Me6tren)]BPh4 is shown in FIG. 1.The results of the crystal structure analysis of [Cu(Me6tren)]BPh4 are shown in FIG. 2.

This molecular description is the mechanism of the reaction; it describes how individual atoms, ions, or molecules interact to form particular products.If you are interested, you can also browse other articles of 33527-91-2, We look forward to the emergence of more reaction modes in the future.

Reference£º
Patent; Schindler, Siegfried; Wuertele, Christian; US2012/16127; (2012); A1;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis