9/23 News What Kind of Chemistry Facts Are We Going to Learn About 108-47-4

The result showed that such a combination of chemo- and biocatalysis improved the catalytic yield more than two times compared with that of sole metal catalysis.I hope my blog about 108-47-4 is helpful to your research. Related Products of 108-47-4

As an important bridge between the micro and macro material world, chemistry is one of the main methods and means for humans to understand and transform the material world. Related Products of 108-47-4, Name is 2,4-Dimethylpyridine, belongs to chiral-nitrogen-ligands compound, is a common compound. Related Products of 108-47-4Catalysts allow a reaction to proceed via a pathway that has a lower activation energy than the uncatalyzed reaction. In an article, authors is Li, Qing-Feng, once mentioned the new application about Related Products of 108-47-4.

The heterogeneous catalytic oxidation of pyridines to pyridine N-oxides has been studied using tungsten-loaded TiO2 as the catalyst and hydrogen peroxide as the green oxidant. The catalysts were synthesized by a simple impregnation technique and characterized by X-ray powder diffraction, Raman spectroscopy, transmission electron microscopy, energy dispersion X-ray spectroscopy, X-ray photoelectron spectroscopy. The catalytic performances of the catalysts were evaluated by the N-oxidation of pyridines with 30 wt% H2O2 solution as an environmentally friendly oxidant at room temperature. These processes serve as an efficient method to prepare a variety of pyridine-N-oxides in modest to high yields, and the pyridine N-oxides could be easily separated from the heterogeneous catalytic system. This study will provide a useful strategy for preparation of heterocyclic N-oxides in the mild condition.

The result showed that such a combination of chemo- and biocatalysis improved the catalytic yield more than two times compared with that of sole metal catalysis.I hope my blog about 108-47-4 is helpful to your research. Related Products of 108-47-4

Reference:
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis—I. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations,
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis