Electric Literature of 108-47-4, Healthcare careers for chemists are once again largely based in laboratories, although increasingly there is opportunity to work at the point of care, helping with patient investigation. 108-47-4, Name is 2,4-Dimethylpyridine,belongs to chiral-nitrogen-ligands compounds, now introducing its new discovery.
A new method based on group contribution additivity, and using Benson’s second order groups, is proposed for the prediction of critical temperatures and enthalpies of vaporization of covalent compounds. Contributions for hydrocarbons and hydrocarbon derivatives containing oxygen, nitrogen, chlorine, bromine and/or sulphur, are given. Results are compared to predictions made using the most common existing first or second order group contribution methods. The overall precision for Tc predictions of 381 compounds is 5.8 K, compared to 23.6 K with the method of Joback and 9.2 K with the method of Constantinou. The precision for predicted DeltaHvap of 319 compounds, at 298 K and at the normal boiling point, is improved by a factor 2 when comparing to the results of the method of Svoboda. Furthermore, one single group decomposition may now be used for the computation of gas phase properties, Tc, and DeltaHvap at any temperature lower than T c, leading to liquid phase thermochemical functions with better precision and simplicity.
By the way, if you are interested in learning more fun chemistry with your kids, get your hands into one chemistry set now, and start enjoying the best part of chemistry: experiments about 108-47-4. Electric Literature of 108-47-4
Reference:
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis—I. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations,
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis